1887

Abstract

Abstract

The relationship between photosynthetic rhizobia that nodulate 10 species (, , , , , , , , , and ) and reference strains of the genera , , and was investigated by analyzing cellular fatty acid methyl esters (FAME) and 16S rRNA sequences. The members of each genus produced very distinct FAME patterns, and the photosynthetic rhizobia formed a subcluster in the cluster. The absence of the cyc C type of fatty acid in all of the photosynthetic rhizobium strains isolated from 10 species distinguished these microorganisms from other known rhizobia, including strain BTAi 1, a photosynthetic symbiont of We sequenced a 264-base segment of the 16S rRNA genes of selected strains after amplification by the PCR and compared the results with previously published sequences for species of rhizobia and related photosynthetic bacteria. Photosynthetic strains IRBG 2 (from ), IRBG 230 (from ), and ORS 322 (from ) had identical sequences but were distinct from strain BTAi (from ) and from strain IRBG 231 (from ), which is similar to the type strain (DNA homology group Ia) of Nonphotosynthetic strain IRBG 274 (from ) was closely related to (DNA homology group II). All of the photosynthetic rhizobia clearly fell into the cluster. Although the results of the FAME and 16S rRNA analyses were in excellent agreement, our placement of the photosynthetic rhizobia is in apparent conflict with phenotypic data, as determined by numerical taxonomy (Ladha and So, Int. J. Syst. Bacteriol., in press) which placed the photosynthetic rhizobia in a coherent cluster that is as far from the genus as the genera and are. While the FAME and 16S rRNA data probably provide a more reliable indication of phylogeny, the degree of phenotypic divergence observed raises questions concerning the polyphasic approach to bacterial systematics.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-3-392
1994-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/3/ijs-44-3-392.html?itemId=/content/journal/ijsem/10.1099/00207713-44-3-392&mimeType=html&fmt=ahah

References

  1. Bhat U. R., Carlson R. W., Busch M., Mayer H. 1991; Distribution and phylogenetic significance of 27-hydroxyoctanoic acid in lipopolysaccharides from bacteria belonging to the alpha-2 subgroups of Proteobacteria. Int. J. Syst. Bacteriol. 41:213–217
    [Google Scholar]
  2. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete sequence of a 16S ribosomal gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  3. Chen W. X., Yan G. H., Li J. L. 1988; Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov.. Int. J. Syst. Bacteriol. 38:392–397
    [Google Scholar]
  4. Devereux J. P., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395
    [Google Scholar]
  5. Downer H. L., Young J. P. W. Unpublished data
    [Google Scholar]
  6. Dreyfus B., Garcia J. L., Gillis M. 1988; Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int. J. Syst. Bacteriol. 38:89–98
    [Google Scholar]
  7. Eaglesham A. R. J., Ellis J. M., Evans W. R., Fleishman D. E., Hungria M., Hardy R. W. F. 1990; The first photosynthetic N2-fixing Rhizobium: characteristics. 805–811 In Gress-hoff P. M., Roth L. E., Stacey G., Newton W. L. (ed.) Nitrogen fixation: achievements and objectives Chapman and Hall, Ltd.; London:
    [Google Scholar]
  8. Graham P. H., Sadowsky M. J., Keyser H. H., Barnet Y. M., Bradley R. S., Cooper J. E., De Ley D. J., Jarvis B. D. W., Roslycky E. B., Strijdom B. W., Young J. P. W. 1991; Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int. J. Syst. Bacteriol. 41:582–587
    [Google Scholar]
  9. Hollis A. B., Kloos W. E., Elkan G. H. 1981; DNA:DNA hybridization studies of Rhizobium japonicum and related Rhizobiaceae. J. Gen. Microbiol. 123:215–222
    [Google Scholar]
  10. Jarvis B. D. W., Downer H. L., Young J. P. W. 1992; Phylogeny of fast-growing soybean-nodulating rhizobia supports synonymy of Sinorhizobium and Rhizobium and assignment to Rhizobium fredii. Int. J. Syst. Bacteriol. 42:93–96
    [Google Scholar]
  11. Jarvis B. D. W., Gillis M., De Ley J. 1986; Intra- and intergeneric similarities between ribosomal RNA cistrons of Rhizobium and Bradyrhizobium species and some related bacteria. Int. Syst. Bacteriol. 36:129–138
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution in protein molecules. 21–123 In Munro H. N. (ed.) Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  13. Kaneda T. 1991; Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol. Rev. 55:288–302
    [Google Scholar]
  14. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int. J. Syst. Bacteriol. 38:358–361
    [Google Scholar]
  15. Kuykendall L. D., Saxena B., Devine T. E., Udell S. E. 1992; Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can. J. Microbiol. 38:501–503
    [Google Scholar]
  16. Ladha J. K., Pareek R. P., So R. B., Becker M. 1990; Stem nodule symbiosis and its unusual properties. 633–640 In Gresshoff P.M., Roth L.E., Stacey G., Newton W. L. (ed.) Nitrogen fixation: achievements and objectives Chapman and Hall; New York:
    [Google Scholar]
  17. Ladha J. K., So R. B. Numerical taxonomy of photosynthetic rhizobia nodulating Aeschynomene species. Int. J. Syst. Bacteriol. in press
    [Google Scholar]
  18. Lindström K. 1989; Rhizobium galegae, a new species of legume root nodule bacteria. Int. J. Syst. Bacteriol. 39:365–367
    [Google Scholar]
  19. Lindström K., Jarvis B. D. W., Lindström P. E., Patel J. J. 1983; DNA homology, phage typing, and cross-inoculation studies of rhizobia infecting Galega species. Can.. J. Microbiol. 29:781–789
    [Google Scholar]
  20. Lindström K., Lehtomaki S. 1988; Metabolic properties, maximum growth, temperature and phage sensitivity of Rhizobium sp. (Galega) compared with other fast-growing rhizobia. FEMS Microbiol. Lett. 50:277–287
    [Google Scholar]
  21. MacKenzie S. L., Lapp M. S., Child J. J. 1978; Fatty acid composition of Rhizobium spp. Can. J. Microbiol. 25:68–74
    [Google Scholar]
  22. Mayer H. 1984; Significance of lipopolysaccharide structure for questions of taxonomy and phylogenetical relatedness of gram-negative bacteria. 71–83 In Haber E. (ed.) The cell membrane Plenum Press; New York:
    [Google Scholar]
  23. Mayer H., Masoud H., Urbanik-Sypneiwska T., Weckesser J. 1989; Lipid A composition and phylogeny of gram-negative bacteria. Bull Jpn. Fed. Cult. Collect. 5:19–25
    [Google Scholar]
  24. Moreno E., Stackebrandt E., Dorsch M., Wolters J., Busch M., Mayer H. 1990; Brucella abortus 16S rRNA and lipid A reveal phylogenetic relationship with Proteobacteria of the alpha-2 subdivision. J. Bacteriol. 172:3569–3576
    [Google Scholar]
  25. Moss C. W. 1990; The use of cellular fatty acids for identification of microorganisms. 59–69 In Fox A. et al. (ed.) Current perspectives in microbiology Plenum Press; New York:
    [Google Scholar]
  26. Murray R. G. E., Brenner D. J., Colwell R. R., De Vos P., Goodfellow M., Grimont P. A. D., Pfennig N., Stackebrandt E., Zavarzin G. A. 1990; Report of the Ad Hoc Committee on Approaches to Taxonomy within the Proteobacteria. Int. J. Syst. Bacteriol. 40:213–215
    [Google Scholar]
  27. Sadowsky M. J., Bohlool B. B., Keyser H. H. 1987; Serological relatedness of Rhizobium fredii to other rhizobia and to the bradyrhizobia. Appl. Environ. Microbiol. 53:1785–1789
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  29. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy Freeman; San Francisco:
    [Google Scholar]
  30. Sokal R. R., Sneath P. H. A. 1963 Numerical taxonomy Freeman; London:
    [Google Scholar]
  31. Watanabe I., Roger P. A., Ladha J. K., van Hove C. 1992 Biofertilizer germplasm collections at IRRI The International Rice Research Institute; Manila, Philippines:
    [Google Scholar]
  32. Watanabe I., So R. B., Ladha J. K., Fujimura Y., Kuraishi H. 1987; A new nitrogen fixing species of pseudomonad: Pseudomonas diazotrophicus sp. nov. isolated from the root of wetland rice. Can. J. Microbiol. 33:670–678
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandier O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Trüper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  34. Wedlock D. N., Jarvis B. D. W. 1986; DNA homologies between Rhizobium fredii, rhizobia that nodulate Galega sp., and other Rhizobium and Bradyrhizobium species. Int. J. Syst. Bacteriol. 36:550–558
    [Google Scholar]
  35. Willems A., Collins M. D. 1993; Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 43:305–313
    [Google Scholar]
  36. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  37. Woese C. R., Stackebrandt E., Weisburg W. G., Paster B. J., Madigan M. T., Fowler V. J., Hahn C. M., Blanz P., Gupta R., Nealson K. H., Fox G. E. 1984; The phylogeny of purple bacteria: the alpha-subdivision. Syst. Appl. Microbiol. 5:327–336
    [Google Scholar]
  38. Wong F. Y. K., Stackebrandt E., Ladha J. K., Fleischman D. E., Date R. A., Fuerst J. A. Unpublished data
    [Google Scholar]
  39. Yanagi M., Yamasato K. 1993; Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol. Lett. 107:115–120
    [Google Scholar]
  40. Yokota A. 1989; Taxonomic significance of cellular fatty acid composition in Rhizobium, Bradyrhizobium and Agrobacterium species. Inst. Ferment. Res. Commun. (Osaka) 14:25–39
    [Google Scholar]
  41. Young J. P. W. 1992; Phylogenetic classification of nitrogen-fixing organisms. 43–86 In Stacey G., Burris R. H., Evans H. J. (ed.) Biological nitrogen fixation Chapman and Hall; New York:
    [Google Scholar]
  42. Young J. P. W., Downer H. L., Eardly B. D. 1991; Phylogeny of the phototrophic rhizobium strain BTAil by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J. Bacteriol. 173:2271–2277
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-3-392
Loading
/content/journal/ijsem/10.1099/00207713-44-3-392
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error