1887

Abstract

A number of strains isolated from desert soil samples were shown to belong to a previously unidentified species, for which we propose the name . The type strain is RO-H-1 (= NRRL B-14698). On the basis of restriction digest data, is most closely related to , and . So far, can be distinguished from only by differences in whole-cell fatty acid composition, divergence in DNA sequence, and resistance to genetic transformation between taxa (in addition to reduced genome relatedness values). Sequence divergence and sexual isolation may prove to be more useful than metabolic characteristics for delimiting cryptic species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-2-256
1994-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/2/ijs-44-2-256.html?itemId=/content/journal/ijsem/10.1099/00207713-44-2-256&mimeType=html&fmt=ahah

References

  1. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit ribosomal RNA sequences. Lett. Appl. Microbiol. 13202–206
    [Google Scholar]
  2. Atlas R. M. 1993 Handbook of microbiological media CRC Press; Boca Raton, Fla:
    [Google Scholar]
  3. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872,. 1105–1139 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Bergey’s manual of systematic bacteriology 2 Williams & Wilkins; Baltimore:
    [Google Scholar]
  4. Cohan F. M., Roberts M. S., King E. C. 1991; The potential for genetic exchange by transformation within a natural population of Bacillus subtilis. Evolution 451393–1421
    [Google Scholar]
  5. De Ley J. H., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12133–142
    [Google Scholar]
  6. Dubnau D., Smith I., Morell P., Marmur J. 1965; Gene conservation in Bacillus species. I. Conserved genetic and nucleic acid base sequence homologies. Proc. Natl. Acad. Sci. USA 54491–498
    [Google Scholar]
  7. Felsenstein J. 1990 PHYLIP 3.3 manual University of California Herbarium; Berkeley:
    [Google Scholar]
  8. Gordon R. E., Haynes W. C., Pang C. H. 1973 The genus Bacillus. Agriculture Handbook No. 427 U. S. Department Agriculture; Washington, D.C.:
    [Google Scholar]
  9. Harford N., Mergeay M. 1973; Interspecific transformation of rifampicin resistance in the genus Bacillus. Mol. Gen. Genet. 120151–155
    [Google Scholar]
  10. Harris-Warrick R. M., Lederberg J. 1978; Interspecies transformation in Bacillus: sequence heterology as the major barrier. J. Bacteriol. 1331237–1245
    [Google Scholar]
  11. Logan N. A., Berkeley R. C. W. 1984; Identification of Bacillus strains using the API system. J. Gen. Microbiol. 1301871–1882
    [Google Scholar]
  12. Mandel M., Marmur J. 1963; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine of DNA. Methods Enzymol. 12B195–206
    [Google Scholar]
  13. Moriya S., Ogasawara N., Yoshikawa H. 1985; Structure and function of the region of the replication origin of the Bacillus subtilis chromosome. III. Nucleotide sequence of some 10,000 base pairs in the origin region. Nucleic Acids Res. 132251–2265
    [Google Scholar]
  14. Nakamura L. K. 1987; Deoxyribonucleic acid relatedness of lactose-positive Bacillus subtilis strains and Bacillus amyloliquefaciens. Int. J. Syst. Bacteriol. 37444–445
    [Google Scholar]
  15. Nakamura L. K. 1989; Taxonomic relationship of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov. Int. J. Syst. Bacteriol. 39295–300
    [Google Scholar]
  16. Nakamura L. K., Swezey J. 1983; Taxonomy of Bacillus circulans Jordon 1890: base composition and reassociation of deoxyribonucleic acid. Int. J. Syst. Bacteriol. 3346–52
    [Google Scholar]
  17. Nei M. 1987 Molecular evolutionary genetics Columbia University Press; New York:
    [Google Scholar]
  18. Roberts M. S., Cohan F. M. 1993; The effect of DNA sequence divergence on sexual isolation in Bacillus. Genetics 134401–408
    [Google Scholar]
  19. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101 Microbial ID, Inc.; Newark, Del:
    [Google Scholar]
  20. Struck J. C. R., Vogel D., Ulbrich N., Erdmann V. A. 1988; A dnaZX-like open reading frame downstream from the Bacillus subtilis sc-RNA gene. Nucleic Acids Res. 162720
    [Google Scholar]
  21. Swofford D. L. 1993 PAUP: phylogenetic analysis using parsimony, version 3.1 Illinois Natural History Survey; Champaign:
    [Google Scholar]
  22. te Riele H. P. J., Venema G. 1982; Molecular fate of heterologous bacterial DNA in competent Bacillus subtilis. I. Processing of B. pumilus and B. licheniformis DNA in B. subtilis. Genetics 101179–188
    [Google Scholar]
  23. Wilson G. A., Young F. E. 1972; Intergenotic transformation of the Bacillus subtilis genospecies. J. Bacteriol. 111705–716
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-2-256
Loading
/content/journal/ijsem/10.1099/00207713-44-2-256
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error