1887

Abstract

Plant-associated bacteria were characterized and are discussed in relation to authentic members of the genus sensu stricto. Bacteria belonging to rRNA group II are separated clearly from members of the genus sensu stricto ( rRNA group) on the basis of plant association characteristics, chemotaxonomic characteristics, DNA-DNA hybridization data, rRNA-DNA hybridization data, and the sequences of 5S and 16S rRNAs. The transfer of , and to the new genus is supported; we also propose that and should be transferred to the genus . Isolate VA-1316 (T = type strain) was distinguished from species on the basis of physiological characteristics and DNA-DNA hybridization data. A new species, sp. nov. is proposed for this organism; the type strain of is VA-1316 (= JCM 7957).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-2-235
1994-04-01
2022-05-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/2/ijs-44-2-235.html?itemId=/content/journal/ijsem/10.1099/00207713-44-2-235&mimeType=html&fmt=ahah

References

  1. Arie T., Namba S., Yamashita S., Doi Y., Kijima T. 1987; Biological control of Fusarium wilt of bottle gourd by mix-cropping with welsh onion or Chinese chive inoculated with Pseudomonas gladioli. Ann. Phytopathol. Soc. Jpn. 53531–539
    [Google Scholar]
  2. Ark P. A., Thomas H. E. 1946; Bacterial leaf spot and bud rot of orchids caused by Phytomonas cattleyae. Phytopathology 36695–698
    [Google Scholar]
  3. Azegami K., Nishiyama K., Watanabe Y., Kadota I., Ohuchi A., Fukazawa C. 1987; Pseudomonas plantarii sp. nov., the causal agent of rice seedling blight. Int. J. Syst. Bacteriol. 37144–152
    [Google Scholar]
  4. Ballard R. W., Palleroni N. J., Doudoroff M., Stanier R. Y., Mandel M. 1970; Taxonomy of the aerobic pseudomonads: Pseudomonas cepacia, P. marginata, P. allicola, and P. caryophylli. J. Gen. Microbiol. 60199–214
    [Google Scholar]
  5. Buddenhagen I. W., Kelman A. 1964; Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 2203–230
    [Google Scholar]
  6. Byng G. S., Whitaker R. J., Gherna R. L., Jensen R. A. 1980; Variable enzymological patterning in tyrosine biosynthesis as a means of determining natural relatedness among the Pseudomonadaceae. J. Bacteriol. 144247–257
    [Google Scholar]
  7. Dams E., Vandenberghe A., Wachter R. D. 1983; Sequences of the 5S rRNAs of Azotobacter vinelandii, Pseudomonas aeruginosa and Pseudomonas fluorescens with some notes on 5S RNA secondary structure. Nucleic Acids Res. 111245–1252
    [Google Scholar]
  8. De Vos P., De Ley J. 1983; Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 33487–509
    [Google Scholar]
  9. De Vos P., Goor M., Gillis M., De Ley J. 1985; Ribosomal ribonucleic acid cistron similarities of phytopathogenic Pseudomonas species. Int. J. Syst. Bacteriol. 35169–184
    [Google Scholar]
  10. De Vos P., Kersters K., Falsen E., Pot B., Gillis M., Segers P., De Ley J. 1985; Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int. J. Syst. Bacteriol. 35443–453
    [Google Scholar]
  11. De Vos P., Van Landschoot A., Segers P., Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B., Kersters K., Lizzaraga P., De Ley J. 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid-ribosomal ribonucleic acid hybridizations. Int. J. Syst. Bacteriol. 3935–49
    [Google Scholar]
  12. Erdmann V. A., Wolters J. 1986; Collection of published 5S, 5.8S and 4.5S ribosomal RNA sequences. Nucleic Acids Res. 14rl–r59
    [Google Scholar]
  13. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39224–229
    [Google Scholar]
  14. Galbraith L., Wilkinson S. G. 1991; Polar lipids and fatty acids of Pseudomonas caryophylli, Pseudomonas gladioli and Pseudomonas picketti. J. Gen. Microbiol. 137197–202
    [Google Scholar]
  15. Hayward A. C. 1964; Characteristics of Pseudomonas solanacearum. J. Appl. Bacteriol. 27265–277
    [Google Scholar]
  16. Hildebrand D. C., Palleroni N. J., Doudoroff M. 1973; Synonymy of Pseudomonas gladioli Severini 1913 and Pseudomonas marginata (McCulloch 1921) Stapp 1928. Int. J. Syst. Bacteriol. 23433–437
    [Google Scholar]
  17. Hu F.-P., Young J. M., Triggs C. M. 1991; Numerical analysis and determinative tests for nonfluorescent plant-pathogenic Pseudomonas spp. and genomic analysis and reclassification of species related to Pseudomonas avenae Manns 1909. Int. J. Syst. Bacteriol. 41516–525
    [Google Scholar]
  18. Imanaka H., Kousaka M., Tamura G., Arima K. 1965; Studies on pyrrolnitrin, a new antibiotic. II. J. Antibiot. Ser. A 18205–206
    [Google Scholar]
  19. Janse J. D. 1991; Infra- and intraspecific classification of Pseudomonas solanacearum strains, using whole cell fatty acid analysis. Syst. Appl. Microbiol. 14335–345
    [Google Scholar]
  20. Johnson J. L., Palleroni N. J. 1989; Deoxyribonucleic acid similarities among Pseudomonas species. Int. J. Syst. Bacteriol. 39230–235
    [Google Scholar]
  21. Kaneko T., Nozaki R., Aizawa K. 1978; Deoxyribonucleic acid relatedness between Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Microbiol. Immunol. 22639–641
    [Google Scholar]
  22. Kern H. 1972; Phytotoxins produced by fusaria,. 35–48 Phytotoxins in plant diseases Academic Press; New York:
    [Google Scholar]
  23. King A., Holmes B., Phillips I., Lapage S. P. 1979; A taxonomic study of clinical isolates of Pseudomonas pickettii, ‘P. thomasii’ and ‘group IVd’ bacteria. J. Gen. Microbiol. 114137–147
    [Google Scholar]
  24. Li X., Dorsch M., Del D. T., Sly L. I., Stackebrandt E., Hayward A. C. 1993; Phylogenetic studies of the rRNA group II pseudomonads based on 16S rRNA gene sequences. J. Appl. Bacteriol. 74324–329
    [Google Scholar]
  25. Lindberg G. D. 1981; An antibiotic lethal to fungi. Plant Dis. 65680–683
    [Google Scholar]
  26. Lindberg G. D., Larkin J. M. 1980; Production of tropolone by Pseudomonas. J. Nat. Prod. (Lloydia) 43592–594
    [Google Scholar]
  27. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J. Gen. Appl. Microbiol. 2917–40
    [Google Scholar]
  28. Palleroni N. J. 1984; Genus 1. Pseudomonas Migula 1894,237AL (Norn. cons. Opin. 5, Jud. Comm. 1952,237),. 141–199 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  29. Palleroni N. J., Ballard R. W., Ralston E., Doudoroff M. 1972; Deoxyribonucleic acid homologies among some Pseudomonas species. J. Bacteriol. 1101–11
    [Google Scholar]
  30. Palleroni N. J., Doudoroff M. 1971; Phenotypic characterization and deoxyribonucleic acid homologies of Pseudomonas solanacearum. J. Bacteriol. 107690–696
    [Google Scholar]
  31. Palleroni N. J., Holmes B. 1981; Pseudomonas cepacia sp. nov., nom. rev. Int. J. Syst. Bacteriol. 31479–481
    [Google Scholar]
  32. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas. Int. J. Syst. Bacteriol. 23333–339
    [Google Scholar]
  33. Pickett M. J., Greenwood J. R. 1980; A study of the Va-1 group of pseudomonads and its relationship to Pseudomonas pickettii. J. Gen. Microbiol. 120439–446
    [Google Scholar]
  34. Ralston E., Palleroni N. J., Doudoroff M. 1973; Pseudomonas pickettii, a new species of clinical origin related to Pseudomonas solanacearum. Int. J. Syst. Bacteriol. 2315–19
    [Google Scholar]
  35. Ramundo B. A., Claflin L. E. 1990; Demonstration of synonymy between the plant pathogens Pseudomonas avenae and Pseudomonas rubrilineans. J. Gen. Microbiol. 1362029–2033
    [Google Scholar]
  36. Rosen H. R. 1922; A bacterial disease of foxtail (Chaetochloa lutescens). Ann. Mo. Bot. Gard. 9333–402
    [Google Scholar]
  37. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 72619–629
    [Google Scholar]
  38. Schaad N. W., Kado C. I., Sumner D. R. 1975; Synonymy of Pseudomonas avenae Manns 1905 and Pseudomonas alboprecipitans Rosen 1922. Int. J. Syst. Bacteriol. 28133–137
    [Google Scholar]
  39. Skerman V. B. D., McGowan V., Sneath P. H. A. 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30225–420
    [Google Scholar]
  40. Stackebrandt E., Murray R. G. E., Truper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.”. Int. J. Syst. Bacteriol. 38321–325
    [Google Scholar]
  41. Stahl D. A., Lane D. J., Olsen G. J., Heller D. J., Schmidt T. M., Pace N. R. 1987; Phylogenetic analysis of certain sulfide-oxidizing and related morphologically conspicuous bacteria by 5S ribosomal ribonucleic acid sequences. Int. J. Syst. Bacteriol. 37116–122
    [Google Scholar]
  42. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43159–271
    [Google Scholar]
  43. Stead D. E. 1992; Grouping of plant-pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int. J. Syst. Bacteriol. 42281–295
    [Google Scholar]
  44. Tamaoka J., Ha D., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb, nov., with an emended description of the genus Comamonas. Int. J. Syst. Bacteriol. 3752–59
    [Google Scholar]
  45. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed high-performance liquid chromatography. FEMS Microbiol. Lett. 25125–128
    [Google Scholar]
  46. Uematsu T., Yoshimura D., Nishiyama K., Ibaraki T., Fujii H. 1976; Pathogenic bacterium causing seedling rot of rice. Ann. Phytopathol. Soc. Jpn. 42464–471
    [Google Scholar]
  47. Urakami T., Araki H., Oyanagi H., Suzuki K., Komagata K. 1990; Paracoccus aminophilus sp. nov., and Paracoccus aminovorans sp. nov., which utilize N,N-dimethylformamide. Int. J. Syst. Bacteriol. 40287–291
    [Google Scholar]
  48. Urakami T., Komagata K. 1979; Cellular fatty acid composition and coenzyme Q system in gram-negative methanol-utilizing bacteria. J. Gen. Appl. Microbiol. 25343–360
    [Google Scholar]
  49. Urakami T., Komagata K. 1986; Occurrence of isoprenoid compounds in gram-negative methanol-, methane-, and methyl- amine-utilizing bacteria. J. Gen. Appl. Microbiol. 32317–341
    [Google Scholar]
  50. Urakami T., Komagata K. 1987; Cellular fatty acid composition with special reference to the existence of hydroxy fatty acids in gram negative methanol-, methane-, and methylamine-utilizing bacteria. J. Gen. Appl. Microbiol. 33135–165
    [Google Scholar]
  51. Wakimoto S., Hirayae K., Tsuchiya K., Kushima Y., Furuya N., Matsuyama N. 1986; Production of antibiotics by plant pathogenic Pseudomonas. Ann. Phytopathol. Soc. Jpn. 52835–842
    [Google Scholar]
  52. Willems A., Busse J., Goor M., Pot B., Falsen E., Jantzen E., Hoste B., Gillis M., Kersters K., Auling G., De Ley J. 1989; Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int. J. Syst. Bacteriol. 39319–333
    [Google Scholar]
  53. Willems A., Falsen E., Pot B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., De Ley J. 1990; Acidovorax, a new geus for Pseudomonas facilis, Pseudomonas delafieldii, EF group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb, nov., Acidovorax delafieldii comb, nov., and Acidovorax temperans sp. nov. Int. J. Syst. Bacteriol. 40384–398
    [Google Scholar]
  54. Willems A., Goor M., Thielemans S., Gillis M., Kersters K., De Ley J. 1992; Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb, nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int. J. Syst. Bacteriol. 42107–119
    [Google Scholar]
  55. Willems A., Pot B., Falsen E., Vandamme P., Gillis M., Kersters K., De Ley J. 1991; Polyphasic taxonomic study of the emended genus Comamonas: relationship to Aquaspirillum aquaticum, E. Falsen group 10, and other clinical isolates. Int. J. Syst. Bacteriol. 41427–444
    [Google Scholar]
  56. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51221–271
    [Google Scholar]
  57. Woese C. R., Blanz P., Hahn C. M. 1984; What isn’t a pseudomonad: the importance of nomenclature in bacterial classification. Syst. Appl. Microbiol. 5179–195
    [Google Scholar]
  58. Woese C. R., Weisburg W. G., Hahn C. M., Paster B. J., Zahlen L. B., Lewis B. J., Macke T. J., Ludwig W., Stackebrandt E. 1985; The phylogeny of purple bacteria: the gamma subdivision. Syst. Appl. Microbiol. 625–33
    [Google Scholar]
  59. Woese C. R., Weisburg W. G., Paster B. J., Hahn C. M., Tanner R. S., Krieg N. R., Koops H. P., Harms H., Stackebrandt E. 1984; The phylogeny of purple bacteria: the beta subdivision. Syst. Appl. Microbiol. 5327–336
    [Google Scholar]
  60. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. 1992; Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb, nov. Microbiol. Immunol. 361251–1275
    [Google Scholar]
  61. Yamada Y., Takinami-Nakamura H., Tahara Y., Oyaizu H., Komagata K. 1982; The ubiquinone systems in the strains of Pseudomonas species. J. Gen. Appl. Microbiol. 287–12
    [Google Scholar]
  62. Young J. M., Dye D. W., Bradbury J. F., Panagopoulos C. G., Robbs C. F. 1978; A proposed nomenclature and classification for plant pathogenic bacteria. N. Z. J. Agric. Res. 21153–177
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-2-235
Loading
/content/journal/ijsem/10.1099/00207713-44-2-235
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error