1887

Abstract

JW/Z-1 (= ATCC 51151 = DSM 7310)) (T = type strain), isolated from freshwater pond sediment, is a nonmotile, gram type-positive, spore-forming, amino acid-utilizing, anaerobic rod. This bacterium produces two inducible enzymes that catalyze the decarboxylation of -hydroxybenzoates. The phenols produced are not utilized. requires yeast extract for growth. Sugars are not utilized. Sodium ions and acetic acid stimulate growth. The optimal temperature and optimal pH for growth are 33 to 34°C and 7.2 to 8.2, respectively. The DNA base composition of the type strain is 35.5 mol% guanine plus cytosine, whereas the DNA base compositions of the type strains of and are 33 and 33.5 mol% guanine plus cytosine, respectively, as determined by a chemical method. 16S rRNA sequence analysis groups strain JW/Z-1 most closely with and (10.6 and 11 inferred changes per 100 bases, respectively). However, does not utilize uric acid, hypoxanthine, xanthine, adenine, or guanine. The cell wall type is Alα (L-Lys direct).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-2-214
1994-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/2/ijs-44-2-214.html?itemId=/content/journal/ijsem/10.1099/00207713-44-2-214&mimeType=html&fmt=ahah

References

  1. American Type Culture Collection 1989 Catalogue of bacteria and bacteriophages, 17th ed.. American Type Culture Collection; Rockville, Md.:
    [Google Scholar]
  2. Barker H. A. 1981; Amino acid degradation by anaerobic bacteria. Annu. Rev. Biochem. 5023–40
    [Google Scholar]
  3. Bayer E., Grom E., Kaltenegger B., Uhmann R. 1976; Separation of amino acids by high performance liquid chromatography. Anal. Chem. 481106–1109
    [Google Scholar]
  4. Berry D. F., Francis A. J., Bollag J. M. 1987; Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol. Rev. 5143–49
    [Google Scholar]
  5. Biggin M. D., Gibson T. J., Hing G. F. 1983; Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc. Natl. Acad. Sci. USA 893936–3965
    [Google Scholar]
  6. Cato E. P., George W. L., Finegold S. M. 1986; Clostridium Prazmowski 1880, 23AL,. 1141–1200 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Bergey’s manual of systematic bacteriology 2 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  7. Chen G., Russell J. B. 1989; Sodium-dependent transport of branched-chain amino acids by a monensin-sensitive ruminai Peptostreptococcus. Appl. Environ. Microbiol. 552658–2663
    [Google Scholar]
  8. Cunin R., Glansdorff N., Pierard A., Stalon V. 1986; Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50314–352
    [Google Scholar]
  9. De Soeto G. 1983; A least square algorithm for fitting additive trees to proximity data. Psychometrika 48621–626
    [Google Scholar]
  10. Elsden S. R., Hilton M. G. 1979; Amino acid utilization patterns in clostridial taxonomy. Arch. Microbiol. 123137–141
    [Google Scholar]
  11. Elsden S. R., Hilton M. G., Parsley K. R., Self R. 1980; The lipid fatty acids of proteolytic clostridia. J. Gen. Microbiol. 118115–123
    [Google Scholar]
  12. Evans W. C., Fuchs G. 1988; Anaerobic degradation of aromatic compounds. Annu. Rev. Microbiol. 42289–317
    [Google Scholar]
  13. Frasca J. M., Parks V. R. 1965; A routine technique for double-staining ultrathin sections using uranyl and lead salts. J. Cell Biol. 25157–161
    [Google Scholar]
  14. Genthner B. R. S., Townsend G. T., Chapman P. J. 1990; Effect of fluorinated analogues of phenol and hydroxybenzoates on the anaerobic transformation of phenol to benzoate. Biodegradation 165–74
    [Google Scholar]
  15. Haggblom M. 1990; Mechanisms of bacterial degradation and transformation of chlorinated compounds. J. Basic Microbiol. 30115–141
    [Google Scholar]
  16. Hale D. D., Reineke W., Wiegel J. Chlorophenol degradation. Chaudry G. R. Biological degradation and bioremediation technologies of toxic chemicals, in press Timber Press; Portland, Oreg:
    [Google Scholar]
  17. Hippe H., Andreesen J. R., Gottschalk G. The genus Clostridium—nonmedical. 1800–1866 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. The prokaryotes Springer-Verlag; New York:
    [Google Scholar]
  18. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules,. 21–132 Munro H. N. Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  19. Kaneda N., Sato M., Yagi K. 1982; Analysis of dansyl amino acids by reversed-phase high-performance liquid chromatography. Anal. Biochem. 12749–54
    [Google Scholar]
  20. Kellenberger E., Ryter A., Sechaud J. 1958; Electron microscope study of DNA-containing plasma. II. Vegetative and mature phage DNA as compared with normal bacterial nucleosides in different physiological states. J. Biophys. Biochem. Cytol. 4671–678
    [Google Scholar]
  21. Lane D. J., Pace B., Olsen G. J., Stahl D. A. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 826955–6959
    [Google Scholar]
  22. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3208–218
    [Google Scholar]
  23. Mead G. C. 1971; The amino acid fermenting clostridia. J. Gen. Microbiol. 6747–56
    [Google Scholar]
  24. Mitruka B. M., Costilow R. N. 1967; Arginine and ornithine catabolism by Clostridium botulinum. J. Bacteriol. 93295–301
    [Google Scholar]
  25. Nisman B. 1954; The Stickland reaction. Bacteriol. Rev. 1816–42
    [Google Scholar]
  26. Olsen G. J., Overbeek R., Larsen N., Marsh T. L., McCaughey M. J., Maciukenas M. A., Kuan W. M., Macke T. J., Woese C. R. 1992; The ribosomal database project. Nucleic Acids Res. 20(Suppl.)2199–2200
    [Google Scholar]
  27. Paster B. J., Russell J. B., Yang C. M. J., Chow J. M., Woese C. R., Tanner R. 1993; Phylogeny of ammonia-producing ruminai bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov. Int. J. Syst. Bacteriol. 43107–110
    [Google Scholar]
  28. Russell J. B. 1987; A proposed mechanism of monensin action in inhibiting ruminai bacterial growth: effects on ion flux and protonmotive force. J. Anim. Sci. 641519–1525
    [Google Scholar]
  29. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 745463–5467
    [Google Scholar]
  30. Schleifer K. H., Kandier O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36407–477
    [Google Scholar]
  31. Schmidt G. C., Logan M. A., Tytell A. A. 1952; The degradation of arginine by Clostridium perfringens (BP6K). J. Biol. Chem. 198771–783
    [Google Scholar]
  32. Smibert R. M., Krieg N. R. 1981; General characterization,. 409–443 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  33. Spurr A. R. 1969; A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 2631–43
    [Google Scholar]
  34. Tapuhi Y., Schmidt D. E., Lindner W., Karger B. L. 1981; Dansylation of amino acids for high-performance liquid chromatography analysis. Anal. Biochem. 115123–129
    [Google Scholar]
  35. Van Kessel J. S., Russell J. B. 1992; Energetics of arginine and lysine transport by whole cells and membrane vesicles of strain SR, a monensin-sensitive ruminai bacterium. Appl. Environ. Microbiol. 58969–975
    [Google Scholar]
  36. Weisburg W. G., Tully J. G., Rose D. L., Petzel J. P., Oyaizu H., Yang D., Mandelco L., Sechrest J., Lawrence T. G., vanEtten J., Maniloff J., Woese C. R. 1989; A phylogenetic analysis of the mycoplasmas: basis for their classification. J. Bacteriol. 1716455–6467
    [Google Scholar]
  37. Weiss N. Personal communication
    [Google Scholar]
  38. Whitman W. B., Jersong S., Sohn S., Caras D. S., Premachandran U. 1986; Isolation and characterization of 22 meso-philic methanococci. Syst. Appl. Microbiol. 7235–240
    [Google Scholar]
  39. Woese C. R., Guteil R., Gupta R., Noller H. F. 1983; Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev. 47621–669
    [Google Scholar]
  40. Woese C. R., Sogin M., Stahl D. A., Lewis B. J., Bonen L. 1976; A comparison of the 16S ribosomal RNAs from mesophilic and thermophilic bacilli. J. Mol. Evol. 7197–213
    [Google Scholar]
  41. Yamato I., Anraku Y. 1990; Mechanism of Na+/proline symport in Escherichia coir, reappraisal of the effect of cation binding to the Na+/proline symport carrier. J. Membr. Biol. 114143–151
    [Google Scholar]
  42. Young L. Y. 1984; Anaerobic degradation of aromatic compounds,. 487–523 Gibson D. E. Microbial degradation of organic compounds Marcel Dekker; New York:
    [Google Scholar]
  43. Zhang X., Gherna R. L., Wiegel J.1992 Decarboxylation of hydroxybenzoate by strictly anaerobic bacteria in methanogenic sediments and pure cultures,. 498–504DECHEMA, Proceedings of the International Symposium on Soil Decontamination Using Biological ProcessesKarlsruhe
    [Google Scholar]
  44. Zhang X., Morgan T. V., Wiegel J. 1990; Conversion of ,3C-1 phenol to l3C-4 benzoate, an intermediate in the anaerobic degradation of chlorophenols. FEMS Lett. 6763–66
    [Google Scholar]
  45. Zhang X., Wiegel J. 1990; Isolation and partial characterization of a Clostridium species transforming para-hydroxybenzoate and 3,4-dihydroxybenzoate and producing phenols as the final transformation products. Microb. Ecol. 20103–121
    [Google Scholar]
  46. Zhang X., Wiegel J. 1990; Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments. Appl. Environ. Microbiol. 561119–1127
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-2-214
Loading
/content/journal/ijsem/10.1099/00207713-44-2-214
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error