1887

Abstract

A new species, , is proposed for black-pigmented asaccharolytic strains isolated from subgingival plaque samples from dogs with naturally occurring periodontal disease. This bacterium is an obligately anaerobic, nonmotile, non-spore-forming, gram-negative, rod-shaped organism. On laked rabbit blood or sheep blood agar plates, colonies are light brown to greenish brown after 2 to 4 days of incubation and dark brown after 14 days of incubation. Colonies on egg yolk agar and on nonhemolyzed sheep blood agar are orange. The cells do not grow in the presence of 20% bile and have a guanine-plus-cytosine content of 49 to 51 mol%. The type strain is VPB 4878 (= NCTC 12835). The average levels of DNA-DNA hybridization between strains and other members of the genus are as follows: ATCC 33277 (T = type strain), 6.5%; cat strain VPB 3492, 5%; ATCC 35406, 1%; NCTC 11362, 5%; and NCTC 12469, 6%. The level of hybridization between NCTC 12835 DNA and ATCC 25260 DNA is 3%. cells produce major amounts of acetic, propionic, isovaleric, and succinic acids and minor amounts of isobutyric and butyric acids as end products of metabolism in cooked meat medium. The major cellular fatty acid is 13-methyltetradecanoic acid (iso-C). Glutamate and malate dehydrogenases are present, as are glucose-6-phosphate dehydrogenase activity (65.7 nmol mg of protein min) and 6-phosphogluconate dehydrogenase activity (63.0 nmol mg of protein min). cells do not agglutinate sheep erythrocytes but exhibit brick red fluorescence at 265 nm and produce catalase.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-2-204
1994-04-01
2023-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/2/ijs-44-2-204.html?itemId=/content/journal/ijsem/10.1099/00207713-44-2-204&mimeType=html&fmt=ahah

References

  1. Brondz I., Carlsson J., Sjostrom M., Sundqvist G. 1989; Significance of cellular fatty acids and sugars in defining the genus Porphyromonas. Int. J. Syst. Bacteriol. 39314–318
    [Google Scholar]
  2. Brondz I., Olsen I. 1991; Multivariate analyses of cellular fatty acids in Bacteroides, Prevotella, Porphyromonas, Wolinella, and Campylobacter spp. J. Clin. Microbiol. 29183–189
    [Google Scholar]
  3. Collings S., Love D. N. 1992; Further studies on some physical and biochemical characteristics of asaccharolytic pigmented Bacteroides of feline origin. J. Appl. Bacteriol. 72529–535
    [Google Scholar]
  4. Collins M. D., Shah H. N. 1986; Reclassification of Bacteroides praeacutus Tissier (Holdeman and Moore) in the new genus Tissierella, as Tissierella praeacuta comb. nov. Int. J. Syst. Bacteriol. 36461–463
    [Google Scholar]
  5. Deutsch J. 1983; Glucose-6-phosphate dehydrogenase,. 190–197 Bergmeyer H. V. Methods in enzymatic analysis 3, 3rd ed.. Verlag Chemie; Weinheim, Germany:
    [Google Scholar]
  6. Ghanem F. M., Ridpath A. C., Moore W. E. C., Moore L. V. H. 1991; Identification of Clostridium botulinum, Clostridium argentinense, and related organisms by cellular fatty acid analysis. J. Clin. Microbiol. 291114–1124
    [Google Scholar]
  7. Holdeman L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe laboratory manual, 4th ed.. Virginia Polytechnic Institute and State University; Blacksburg:
    [Google Scholar]
  8. Holdeman L. V., Kelley R. W., Moore W. E. C. 1984; Genus 1. Bacteroides Castellani & Chalmers 1919, 959,. 604–631 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  9. Johnson J. L. 1985; DNA reassociation and RNA hybridization of bacterial nucleic acids. Methods Microbiol. 1833–74
    [Google Scholar]
  10. Karjalainen J., Kanervo A., Vaisanen M.-L., Forsblom B., Sarkiala E., Jousimies-Somer H. 1993; Porphyromonas-like gram-negative rods in naturally occurring periodontitis in dogs. FEMS Immunol. Med. Microbiol. 6207–212
    [Google Scholar]
  11. Lambe D. W., Ferguson K. P., Mayberry W. R. 1982; Characterization of Bacteroides gingivalis by direct fluorescent antibody staining and cellular fatty acid profiles. Can. J. Microbiol. 28367–374
    [Google Scholar]
  12. Love D. N., Bailey G. D., Bastin D. 1992; Chromosomal DNA probes for the identification of asaccharolytic anaerobic pigmented bacterial rods from the oral cavity of cats. Vet. Microbiol. 31287–295
    [Google Scholar]
  13. Love D. N., Johnson J. L., Jones R. F., Calverley A. 1987; Bacteroides salivosus sp. nov., an asaccharolytic black-pigmented Bacteroides species from cats. Int. J. Syst. Bacteriol. 37307–309
    [Google Scholar]
  14. Love D. N., Jones R. F., Bailey M. 1979; Clostridium villosum sp. nov. from subcutaneous abscesses in cats. Int. J. Syst. Bacteriol. 29241–244
    [Google Scholar]
  15. Love D. N., Jones R. F., Calverley A. 1984; Asaccharolytic black-pigmented Bacteroides strains from soft-tissue infections in cats. Int. J. Syst. Bacteriol. 34300–303
    [Google Scholar]
  16. Marmur J., Doty P. 1962; Determination of base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5109–118
    [Google Scholar]
  17. Mayberry W. R., Lambe D. W., Ferguson K. P. 1982; Identification of Bacteroides species by cellular fatty acid profiles. Int. J. Syst. Bacteriol. 3221–27
    [Google Scholar]
  18. Moore L. V. H. Personal communication
    [Google Scholar]
  19. Richardson B. J., Baverstock P. R., Adams M. 1986 Allozyme electrophoresis. A handbook for animal systematics and population studies Academic Press; Sydney, Australia:
    [Google Scholar]
  20. Sarkiala E. M., Asikainen S., Kanervo A., Junttila J., Jousimies-Somer H. R. The efficacy of tinidazole in naturally occurring periodontitis in dogs: bacteriological and clinical results. Vet. Microbiol. in press
    [Google Scholar]
  21. Sarkiala E. M., Asikainen S., Wolf J., Kanervo A., Happonen I., Jousimies-Somer H. 1993; Clinical, radiological and bacteriological findings of naturally occurring periodontitis in dogs. J. Small Anim. Pract. 34265–270
    [Google Scholar]
  22. Selin Y. M., Harich B., Johnson J. L. 1983; Preparation of labeled nucleic acids (nick translation and iodination) for DNA homology and rRNA hybridization experiments. Curr. Microbiol. 8127–132
    [Google Scholar]
  23. Shah H. N., Collins M. D. 1980; Fatty acid and isoprenoid quinone composition in the classification of Bacteroides melaninogenicus and other related taxa. J. Appl. Bacteriol. 4875–87
    [Google Scholar]
  24. Shah H. N., Collins M. D. 1983; A review. Genus Bacteroides. A chemotaxonomical perspective. J. Appl. Bacteriol. 55403–416
    [Google Scholar]
  25. Shah H. N., Collins M. D. 1988; Proposal for reclassification of Bacteroides asaccharolyticus, Bacteroides gingivaiis, and Bacteroides endodontalis in a new genus, Porphyromonas. Int. J. Syst. Bacteriol. 38128–131
    [Google Scholar]
  26. Shah H. N., Collins M. D. 1989; Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int. J. Syst. Bacteriol. 3985–87
    [Google Scholar]
  27. Shah H. N., Collins M. D. 1990; Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. Int. J. Syst. Bacteriol. 40205–208
    [Google Scholar]
  28. Shah H. N., Williams R. A. D. 1982; Dehydrogenase patterns in the taxonomy of Bacteroides. J. Gen. Microbiol. 1282955–2965
    [Google Scholar]
  29. Tereba A., McCarthy B. J. 1973; Hybridization of 125I-labeled ribonucleic acid. Biochemistry 124675–4679
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-2-204
Loading
/content/journal/ijsem/10.1099/00207713-44-2-204
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error