1887

Abstract

During our taxonomic study of motile actinomycetes, soil isolate RA 335 was found to form a blue substrate mycelium and aerial mycelia with motile arthrospores and to have lysine as the cell wall diamino acid. IFO 13939 (T = type strain) and “” IFO 13993 are known to have the same characteristics. Therefore, the taxonomic position of these three strains was studied. Aerial mycelia of these strains fragmented during the growth cycle and produced motile spores arranged in chains within the mycelia. Sporangia were not observed. The strains contained menaquinone 9(H), had guanine-plus-cytosine contents of 69.9 to 72.1 mol%, and had D-glutamic acid, D- and L-serine, glycine, L-alanine, and L-lysine as cell wall amino acids (type A3α). The taxonomic characteristics of these strains differ from those of the previously described motile actinomycetes. On the basis of morphological, physiological, and chemotaxonomic data and the results of DNA-DNA hybridization and comparative 16S rRNA studies, we propose a new genus, , for these organisms. The type species is comb. nov. (type strain, IFO 13939), which is divided into two subspecies, subsp. subsp. nov. (type strain, IFO 13939) for IFO 13939 and strain RA 335 and subsp. (type strain, IFO 13993) for “” IFO 13993.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-2-193
1994-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/2/ijs-44-2-193.html?itemId=/content/journal/ijsem/10.1099/00207713-44-2-193&mimeType=html&fmt=ahah

References

  1. Brosius J., Palmer J. L., Kennedy J. P., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 754801–4805
    [Google Scholar]
  2. Celmer W. D., Cullen W. P., Moppet C. E., Routien J. B., Shibakawa R., Tone J.July 1977 U.S. Patent 4,038,383
  3. Container Corporation of America 1958 Color harmony manual, 4th ed.. Container Corporation of America; Chicago:
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39224–229
    [Google Scholar]
  5. Goodfellow M., Stanton L. J., Simpson K. E., Minnikin D. E. 1990; Numerical and chemical classification of Actinoplanes and some related actinomycetes. J. Gen. Microbiol. 13619–36
    [Google Scholar]
  6. Harper J. J., Davis G. H. G. 1979; Two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int. J. Syst. Bacteriol. 2956–58
    [Google Scholar]
  7. Hasegawa T., Lechevalier M. P., Lechevalier M. P. 1979; Phospholipid composition of motile actinomycetes. J. Gen. Appl. Microbiol. 25209–213
    [Google Scholar]
  8. Hayakawa M., Nonomura H. 1987; Humic acid-vitamin agar, a new medium for selective isolation of soil actinomycetes. J. Ferment. Technol. 65501–509
    [Google Scholar]
  9. Higgins D. R., Bleasby A. J., Fuchs R. 1992; Clustal V: improved software for multiple sequence alignment. CABIOS 8189–190
    [Google Scholar]
  10. Horan A. C., Brodsky B. 1986; Actinoplanes caeruleus sp. nov., a blue-pigmented species of the genus Actinoplanes. Int. J. Syst. Bacteriol. 36187–191
    [Google Scholar]
  11. Ina Y. 1991 Molecular evolutionary analysis system for DNA and amino acid sequences (ODEN), version 1.1 DNA Data Bank of Japan, DNA Research Center, National Institute of Genetics, Mishima; Japan:
    [Google Scholar]
  12. Kandier O., König H. 1978; Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch. Microbiol. 118141–152
    [Google Scholar]
  13. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16111–120
    [Google Scholar]
  14. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms,. 173–199 Goodfellow M., Minnikin D. E. Chemical methods in bacterial systematics Academic Press, Ltd.; London:
    [Google Scholar]
  15. Lechevalier M. P., Lechevalier H. A. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int. J. Syst. Bacteriol. 20435–443
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39159–167
    [Google Scholar]
  17. Mikami H., Ishida Y. 1983; Post-column fluorometric detection of reducing sugars in high-performance liquid chromatography using arginine. Bunseki Kagaku 32207–210
    [Google Scholar]
  18. Minnikin D. E., Alshamaony L., Goodfellow M. 1975; Differentiation of Mycobacterium, Nocardia and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J. Gen. Microbiol. 88200–204
    [Google Scholar]
  19. Minnikin D. E., Collins M. D., Goodfellow M. 1975; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J. Appl. Bacteriol. 4787–95
    [Google Scholar]
  20. Saiki R. K., Gelfand D. H., Stoffe S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich A. 1988; Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239487–491
    [Google Scholar]
  21. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 72619–629
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4406–425
    [Google Scholar]
  23. Schleifer K. H., Kandier O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36407–477
    [Google Scholar]
  24. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16313–340
    [Google Scholar]
  25. Stackebrandt E., Kroppenstedt R. M. 1987; Union of the genera Actinoplanes Couch, Ampullariella Couch, and Amorphosporangium Couch in a redefined genus Actinoplanes. Syst. Appl. Microbiol. 9110–114
    [Google Scholar]
  26. Stackebrandt E., Ludwig W., Seewaldt E., Schleifer K. H. 1983; Phylogeny of spore-forming members of the order Actinomycetales. Int. J. Syst. Bacteriol. 33173–180
    [Google Scholar]
  27. Suzuki K., Komogata K. 1983; Taxonomic significance of cellular fatty acid composition in some coryneform bacteria. Int. J. Syst. Bacteriol. 33188–193
    [Google Scholar]
  28. Tille D., Vettermann R., Prauser H. 1982; DNA:DNA reassociation between DNAs of actinoplanetes and related genera, poster session. Abstr. 5th Int. Symp. Actinomycetes Biol.
    [Google Scholar]
  29. Uchida K., Aida K. 1977; Acyl type of bacterial cell wall: its simple identification by colorimetric method. J. Gen. Appl. Microbiol. 23249–260
    [Google Scholar]
  30. Vobis G. 1989; Section 28. Actinoplanetes,. 2418 Williams S. T., Sharpe M. E., Holt J. G. Bergey’s manual of systematic bacteriology 4 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  31. Wako Pure Chemical Industries, Ltd. 1989 Technical note for the system of PTC-amino acid analysis Wako Pure Chemical Industries, Ltd.; Osaka, Japan: (In Japanese)
    [Google Scholar]
  32. Yokota A., Tamura T., Hasegawa T., Huang L. H. 1993; A new genus of the order Actinomycetales: Catenuloplanes japonicus gen. nov., sp. nov. Int. J. Syst. Bacteriol. 43805–812
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-2-193
Loading
/content/journal/ijsem/10.1099/00207713-44-2-193
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error