Differentiation of from Other Group Bacteria with the PCR Free

Abstract

Abstract

Variation among isolates of was examined by using restriction fragmentation patterns and the PCR performed with arbitrary and sequence-specific oligonucleotide primers. The patterns were compared with the patterns generated from strains of closely related species belonging to the “ group” of bacteria, including , , and All profiles were identical for each of 18 restriction enzymes, each of 10 arbitrary PCR primers, and a repetitive extragenic palindrome-specific PCR primer. The PCR profiles generated with a coliphage M13-based primer exhibited slight pattern variation in a 400- to 500-bp band region. The profiles were unique compared with the profiles of the other species examined. In these other species, strain-to-strain variations were observed. Our results showed that isolates of are almost completely homogeneous, indicating a clonal lineage, and are distinct from other members of the group and that , as a species in its own right, may have evolved only relatively recently.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-1-99
1994-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/1/ijs-44-1-99.html?itemId=/content/journal/ijsem/10.1099/00207713-44-1-99&mimeType=html&fmt=ahah

References

  1. Ash C., Collins M. D. 1992; Comparative analysis of 23S ribosomal RNA gene sequences of Bacillus anthracis and emetic Bacillus cereus determined by PCR-direct sequencing. FEMS Microbiol. Lett. 94 75 80
    [Google Scholar]
  2. Ash C., Farrow J. A. E., Dorsche E., Stackebrandt E., Collins M. D. 1991; Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41 343 346
    [Google Scholar]
  3. Atlas R. M., Bej A. K. 1990; Detecting bacterial pathogens in environmental water samples by using PCR and gene probes. 399 407 Innis M., Gelfand D., Sninsky D., White T. PCR protocols: a guide to methods and applications Academic Press; New York:
    [Google Scholar]
  4. Bohm R., Spath G. 1989; The taxonomy of Bacillus anthracis according to the results of DNA-DNA hybridisation. Salisbury Med. Bull. 68 (Special Suppl.) 29 31
    [Google Scholar]
  5. Bowen J. E., Turnbull P. C. B. 1992; The fate of Bacillus anthracis in unpasteurised and pasteurised milk. Lett. Appl. Microbiol. 15 224 227
    [Google Scholar]
  6. Cancilla M. R., Powell I. B., Hillier A. J., Davidson B. E. 1992; Rapid genomic fingerprinting of Lactococcus lactis strains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels. Appl. Environ. Microbiol. 58 1772 1775
    [Google Scholar]
  7. Carl M., Hawkins R., Coulson N., Lowe J., Robertson D. L., Nelson W. M., Titball R. W., Woody J. N. 1992; Detection of spores of Bacillus anthracis using the polymerase chain reaction. J. Infect. Dis. 165 1145 1148
    [Google Scholar]
  8. Cowles P. B. 1931; A bacteriophage for S. anthracis. J. Bacteriol. 21 161 166
    [Google Scholar]
  9. Davies J. C. A. 1982; A major epidemic of anthrax in Zimbabwe. I. Cent. Afr. J. Med. 28 291 298
    [Google Scholar]
  10. Davies J. C. A. 1983; A major epidemic of anthrax in Zimbabwe. II. Distribution of subcutaneous lesions. Cent. Afr. J. Med. 29 8 12
    [Google Scholar]
  11. Kaneko T., Nozaki R., Aizawa K. 1978; Deoxyribonucleic acid relatedness between Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis. Microbiol. Immunol. 22 639 641
    [Google Scholar]
  12. Logan N. A., Carman J. A., Melling J., Berkeley R. C. W. 1985; Identification of Bacillus anthracis by API tests. J. Med. Microbiol. 20 75 85
    [Google Scholar]
  13. Mansley L. M. 1978; An outbreak of anthrax in the West Midlands. State Vet. J. 33 72 75
    [Google Scholar]
  14. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3 208 218
    [Google Scholar]
  15. McDonald W. C., Felkner I. C., Turetsky A., Matney T. S. 1963; Similarity in base compositions of deoxyribonucleates from several strains of Bacillus cereus and Bacillus anthracis. J. Bacteriol. 85 1071 1073
    [Google Scholar]
  16. McKee R. A., Gooding G. M., Garrett S. D., Powell H. A., Lund B. M., Knox M. 1991; DNA probes and the detection of food-borne pathogens using the polymerase chain reaction. Biochem. Soc. Trans. 19 698 701
    [Google Scholar]
  17. McMullin D. E., Muldrow L. L. 1992; Typing of toxic strains of Clostridium difficile using DNA fingerprints generated with arbitrarily primed polymerase chain reaction primers. FEMS Microbiol. Lett. 92 5 10
    [Google Scholar]
  18. Miteva V., Abadjieva A., Grigorova R. 1991; Differentiation among strains and serotypes of Bacillus thuringiensis by M13 DNA fingerprinting. J. Gen. Microbiol. 137 593 600
    [Google Scholar]
  19. Miteva V., Abadjieva A., Ivanov P., Grigerova R. 1990; M13 bacteriophage DNA as a probe for DNA fingerprinting in Gram-positive organisms. Syst. Appl. Microbiol. 13 350 353
    [Google Scholar]
  20. National Collection of Type Cultures and Pathogenic Fungi. 1989 Public Health Laboratory Service; London:
    [Google Scholar]
  21. Pasteur L. 1881; De l’attenuation des virus et de leur retour a la virulence. C. R. Acad. Sci. 92 429 435
    [Google Scholar]
  22. Plotkin S. A., Brachman P. S., Utell M., Bumford F. H., Atchison M. M. 1960; An epidemic of inhalation anthrax, the first in the twentieth century. Am. J. Med. 29 992 1001
    [Google Scholar]
  23. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular cloning: a laboratory manual. , 2nd ed.. Cold Spring Harbor Laboratory Press, Cold Spring Harbor; N.Y.:
    [Google Scholar]
  24. Seki T., Chang C., Mikami H., Oshima Y. 1978; Deoxyribonucleic acid homology of the genus Bacillus. Int. J. Syst. Bacteriol. 28 182 189
    [Google Scholar]
  25. Smith N. E., Gordon R. E., Sneath P. H. A. 1964; Type cultures and proposed neotype cultures of some species in the genus Bacillus. J. Gen. Microbiol. 34 269 272
    [Google Scholar]
  26. Sterne M. 1937; The effects of different carbon dioxide concentrations on the growth of virulent anthrax strains. Pathogenicity and immunity tests on guinea-pigs and sheep with anthrax variants derived from virulent strains. Onderstepoort J. Vet. Sci. Anim. Ind. 9 49 67
    [Google Scholar]
  27. Titball R. W., Turnbull P. C. B., Hutson R. A. 1991; The monitoring and detection of Bacillus anthracis in the environment. J. Appl. Bacteriol. Symp. Suppl. 70 9S 18S
    [Google Scholar]
  28. Turnbull P. C. B., Hofmeyr J. M., McGetrick A. M. T., Oppenheim B. A. 1986; Isolation of Bacillus anthracis, the agent of anthrax, in the Etosha National Park. Madoqua 14 321 331
    [Google Scholar]
  29. Turnbull P. C. B., Hutson R. A., Ward M. J., Jones M. N., Quinn C. P., Finnie N. J., Duggleby C. J., Kramer J. M., Melling J. 1992; Bacillus anthracis but not always anthrax. J. Appl. Bacteriol. 72 21 28
    [Google Scholar]
  30. Vassart G., Georges M., Monsieur R., Brocas H., Lequarre A. S., Christophe D. 1987; A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science 235 683 684
    [Google Scholar]
  31. Versalovic J., Koeuth T., Lupski J. R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19 6823 6831
    [Google Scholar]
  32. Welsh J., McClelland M. 1990; Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18 7213 7218
    [Google Scholar]
  33. Williams D. R., Rees G. B., Rogers M. E. 1992; Observations on an outbreak of anthrax in pigs in north Wales. Vet. Rec. 131 363 366
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-1-99
Loading
/content/journal/ijsem/10.1099/00207713-44-1-99
Loading

Data & Media loading...

Most cited Most Cited RSS feed