1887

Abstract

Abstract

Variation among isolates of was examined by using restriction fragmentation patterns and the PCR performed with arbitrary and sequence-specific oligonucleotide primers. The patterns were compared with the patterns generated from strains of closely related species belonging to the “ group” of bacteria, including , , and All profiles were identical for each of 18 restriction enzymes, each of 10 arbitrary PCR primers, and a repetitive extragenic palindrome-specific PCR primer. The PCR profiles generated with a coliphage M13-based primer exhibited slight pattern variation in a 400- to 500-bp band region. The profiles were unique compared with the profiles of the other species examined. In these other species, strain-to-strain variations were observed. Our results showed that isolates of are almost completely homogeneous, indicating a clonal lineage, and are distinct from other members of the group and that , as a species in its own right, may have evolved only relatively recently.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-1-99
1994-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/1/ijs-44-1-99.html?itemId=/content/journal/ijsem/10.1099/00207713-44-1-99&mimeType=html&fmt=ahah

References

  1. Ash C., Collins M. D. 1992; Comparative analysis of 23S ribosomal RNA gene sequences of Bacillus anthracis and emetic Bacillus cereus determined by PCR-direct sequencing. FEMS Microbiol. Lett. 94 75 80
    [Google Scholar]
  2. Ash C., Farrow J. A. E., Dorsche E., Stackebrandt E., Collins M. D. 1991; Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41 343 346
    [Google Scholar]
  3. Atlas R. M., Bej A. K. 1990; Detecting bacterial pathogens in environmental water samples by using PCR and gene probes. 399 407 Innis M., Gelfand D., Sninsky D., White T. PCR protocols: a guide to methods and applications Academic Press; New York:
    [Google Scholar]
  4. Bohm R., Spath G. 1989; The taxonomy of Bacillus anthracis according to the results of DNA-DNA hybridisation. Salisbury Med. Bull. 68 (Special Suppl.) 29 31
    [Google Scholar]
  5. Bowen J. E., Turnbull P. C. B. 1992; The fate of Bacillus anthracis in unpasteurised and pasteurised milk. Lett. Appl. Microbiol. 15 224 227
    [Google Scholar]
  6. Cancilla M. R., Powell I. B., Hillier A. J., Davidson B. E. 1992; Rapid genomic fingerprinting of Lactococcus lactis strains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels. Appl. Environ. Microbiol. 58 1772 1775
    [Google Scholar]
  7. Carl M., Hawkins R., Coulson N., Lowe J., Robertson D. L., Nelson W. M., Titball R. W., Woody J. N. 1992; Detection of spores of Bacillus anthracis using the polymerase chain reaction. J. Infect. Dis. 165 1145 1148
    [Google Scholar]
  8. Cowles P. B. 1931; A bacteriophage for S. anthracis. J. Bacteriol. 21 161 166
    [Google Scholar]
  9. Davies J. C. A. 1982; A major epidemic of anthrax in Zimbabwe. I. Cent. Afr. J. Med. 28 291 298
    [Google Scholar]
  10. Davies J. C. A. 1983; A major epidemic of anthrax in Zimbabwe. II. Distribution of subcutaneous lesions. Cent. Afr. J. Med. 29 8 12
    [Google Scholar]
  11. Kaneko T., Nozaki R., Aizawa K. 1978; Deoxyribonucleic acid relatedness between Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis. Microbiol. Immunol. 22 639 641
    [Google Scholar]
  12. Logan N. A., Carman J. A., Melling J., Berkeley R. C. W. 1985; Identification of Bacillus anthracis by API tests. J. Med. Microbiol. 20 75 85
    [Google Scholar]
  13. Mansley L. M. 1978; An outbreak of anthrax in the West Midlands. State Vet. J. 33 72 75
    [Google Scholar]
  14. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3 208 218
    [Google Scholar]
  15. McDonald W. C., Felkner I. C., Turetsky A., Matney T. S. 1963; Similarity in base compositions of deoxyribonucleates from several strains of Bacillus cereus and Bacillus anthracis. J. Bacteriol. 85 1071 1073
    [Google Scholar]
  16. McKee R. A., Gooding G. M., Garrett S. D., Powell H. A., Lund B. M., Knox M. 1991; DNA probes and the detection of food-borne pathogens using the polymerase chain reaction. Biochem. Soc. Trans. 19 698 701
    [Google Scholar]
  17. McMullin D. E., Muldrow L. L. 1992; Typing of toxic strains of Clostridium difficile using DNA fingerprints generated with arbitrarily primed polymerase chain reaction primers. FEMS Microbiol. Lett. 92 5 10
    [Google Scholar]
  18. Miteva V., Abadjieva A., Grigorova R. 1991; Differentiation among strains and serotypes of Bacillus thuringiensis by M13 DNA fingerprinting. J. Gen. Microbiol. 137 593 600
    [Google Scholar]
  19. Miteva V., Abadjieva A., Ivanov P., Grigerova R. 1990; M13 bacteriophage DNA as a probe for DNA fingerprinting in Gram-positive organisms. Syst. Appl. Microbiol. 13 350 353
    [Google Scholar]
  20. National Collection of Type Cultures and Pathogenic Fungi. 1989 Public Health Laboratory Service; London:
    [Google Scholar]
  21. Pasteur L. 1881; De l’attenuation des virus et de leur retour a la virulence. C. R. Acad. Sci. 92 429 435
    [Google Scholar]
  22. Plotkin S. A., Brachman P. S., Utell M., Bumford F. H., Atchison M. M. 1960; An epidemic of inhalation anthrax, the first in the twentieth century. Am. J. Med. 29 992 1001
    [Google Scholar]
  23. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular cloning: a laboratory manual. , 2nd ed.. Cold Spring Harbor Laboratory Press, Cold Spring Harbor; N.Y.:
    [Google Scholar]
  24. Seki T., Chang C., Mikami H., Oshima Y. 1978; Deoxyribonucleic acid homology of the genus Bacillus. Int. J. Syst. Bacteriol. 28 182 189
    [Google Scholar]
  25. Smith N. E., Gordon R. E., Sneath P. H. A. 1964; Type cultures and proposed neotype cultures of some species in the genus Bacillus. J. Gen. Microbiol. 34 269 272
    [Google Scholar]
  26. Sterne M. 1937; The effects of different carbon dioxide concentrations on the growth of virulent anthrax strains. Pathogenicity and immunity tests on guinea-pigs and sheep with anthrax variants derived from virulent strains. Onderstepoort J. Vet. Sci. Anim. Ind. 9 49 67
    [Google Scholar]
  27. Titball R. W., Turnbull P. C. B., Hutson R. A. 1991; The monitoring and detection of Bacillus anthracis in the environment. J. Appl. Bacteriol. Symp. Suppl. 70 9S 18S
    [Google Scholar]
  28. Turnbull P. C. B., Hofmeyr J. M., McGetrick A. M. T., Oppenheim B. A. 1986; Isolation of Bacillus anthracis, the agent of anthrax, in the Etosha National Park. Madoqua 14 321 331
    [Google Scholar]
  29. Turnbull P. C. B., Hutson R. A., Ward M. J., Jones M. N., Quinn C. P., Finnie N. J., Duggleby C. J., Kramer J. M., Melling J. 1992; Bacillus anthracis but not always anthrax. J. Appl. Bacteriol. 72 21 28
    [Google Scholar]
  30. Vassart G., Georges M., Monsieur R., Brocas H., Lequarre A. S., Christophe D. 1987; A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science 235 683 684
    [Google Scholar]
  31. Versalovic J., Koeuth T., Lupski J. R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19 6823 6831
    [Google Scholar]
  32. Welsh J., McClelland M. 1990; Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18 7213 7218
    [Google Scholar]
  33. Williams D. R., Rees G. B., Rogers M. E. 1992; Observations on an outbreak of anthrax in pigs in north Wales. Vet. Rec. 131 363 366
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-1-99
Loading
/content/journal/ijsem/10.1099/00207713-44-1-99
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error