1887

Abstract

A genome and fatty acid analysis of 16 reference strains having DNA compositions ranging from 62.2 to 65.5 mol% G+C was performed by pulsed-field gel electrophoresis of I and I macrorestriction fragments and gas chromatography of total cellular fatty acids. Macrorestriction fragment patterns were evaluated by using previously described algorithms (D. Grothues and B. Tümmler, Mol. Microbiol. 5:2763-2776, 1991), and the results allowed us to subdivide the species into two groups which correlated with G+C content. Two examples of recent strain divergence were observed among clinical isolates, but in general a marked degree of heterogeneity was observed in the macrorestriction fragment patterns, and even phenotypically similar strains produced divergent patterns. While the differences were not sufficiently great to exclude any strain from , they suggest that recombination and niche-specific selection may be significant factors responsible for generating and maintaining the heterogeneity inherent in the species. Genome sizes were estimated from the sums of I restriction fragment sizes and ranged from 3.4 to 4.3 Mbp; the genome sizes of the low-G+C-content strains (G+C contents, approximately 62 mol%) were confined to a narrow range between 3.9 and 4.1 Mbp. An examination of the distributions of macrorestriction fragments resulting from digestion with I and I showed that both distributions differed significantly from the expected (random) distribution, suggesting that there is a supragenic level of chromosomal organization. An analysis of fatty acid methyl ester data by using Microbial Identification System software revealed a similar correlation between phenotype and G+C content, indicating that division of the species is possible by the method used in this study. For comparative purposes, a numerical analysis of previously reported substrate utilization data (N. J. Palleroni, M. Doudoroff, R. Y. Stanier, R. E. Solánes, and M. Mandel, J. Gen. Microbiol. 60:215-231, 1970) was performed. The results of this analysis revealed that there was a relationship among strains which showed no correlation with the results obtained from either the macrorestriction fragment analysis or the fatty acid methyl ester analysis.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-1-54
1994-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/1/ijs-44-1-54.html?itemId=/content/journal/ijsem/10.1099/00207713-44-1-54&mimeType=html&fmt=ahah

References

  1. Carlson C. A., Pierson L. S., Rosen J. J., Ingraham J. L. 1983; Pseudomonas stutzeri and related species undergo natural transformation. J. Bacteriol. 153 93 99
    [Google Scholar]
  2. Cohan F. M. Submitted for publication
  3. Cuypers H., Zumft W. G. 1992; Regulatory components of the denitrification gene cluster of Pseudomonas stutzeri. 188 197 Galli E., Silver S., Witholt B. Pseudomonas: molecular biology and biotechnology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  4. Daughton C. G., Evans W. C. 1977; Parathion utilization by bacterial symbionts in a chemostat. Appl. Environ. Microbiol. 34 174 184
    [Google Scholar]
  5. Giovannetti L., Ventura S., Bazzicalupo M., Fani R., Materassi R. 1990; DNA restriction fingerprint analysis of the soil bacterium Azospirillum. J. Gen. Microbiol. 136 1161 1166
    [Google Scholar]
  6. Gower J. C. 1966; Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53 325 338
    [Google Scholar]
  7. Grothues D., Tümmler B. 1991; New approaches in genome analysis by pulsed-field gel electrophoresis: application to the analysis of Pseudomonas species. Mol. Microbiol. 5 2763 2776
    [Google Scholar]
  8. Hayashida S., Tanaka S., Teramoto Y., Nanari N., Yoshino S., Furukawa K. 1991; Isolation of anti-algal Pseudomonas stutzeri strains and their lethal activity for Chattonella antiqua. Agric. Biol. Chem. 55 787 790
    [Google Scholar]
  9. Holmes B. 1986; Identification and distribution of Pseudomonas stutzeri in clinical material. J. Appl. Bacteriol. 60 401 411
    [Google Scholar]
  10. Krawiec S., Riley M. 1990; Organization of the bacterial chromosome. Microbiol. Rev. 54 502 539
    [Google Scholar]
  11. Lorenz M. G., Wackernagel W. 1991; High frequency of natural genetic transformation of Pseudomonas stutzeri in soil extract supplemented with a carbon-energy and phosphorus source. Appl. Environ. Microbiol. 57 1246 1251
    [Google Scholar]
  12. Mandel M. 1966; Deoxyribonucleic acid base composition in the genus Pseudomonas. J. Gen. Microbiol. 43 273 292
    [Google Scholar]
  13. McClelland M., Hanish J., Nelson M., Patel Y. 1988; KGB: a single buffer for all restriction endonucleases. Nucleic Acids Res. 16 364
    [Google Scholar]
  14. McClelland M., Jones R., Patel Y., Nelson M. 1987; Restriction endonucleases for pulsed field mapping of bacterial genomes. Nucleic Acids Res. 15 5985 6005
    [Google Scholar]
  15. Miller L., Berger T. 1985 Bacteria identification by gas chromatography of whole cell fatty acids Hewlett-Packard application note 228–41. Hewlett-Packard Co.; Avondale, Pa:
    [Google Scholar]
  16. Nei M., Li W.-H. 1979; Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76 5269 5273
    [Google Scholar]
  17. Palleroni N. J. 1984; Pseudomonadaceae. 141 199 Kreig N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  18. Palleroni N. J. Unpublished data
  19. Palleroni N. J., Doudoroff M. 1972; Some properties and taxonomic subdivisions of the genus Pseudomonas. Annu. Rev. Phytopathol. 10 73 100
    [Google Scholar]
  20. Palleroni N. J., Doudoroff M., Stanier R. Y., Solánes R. E., Mandel M. 1970; Taxonomy of the aerobic pseudomonads: the properties of the Pseudomonas stutzeri group. J. Gen. Microbiol. 60 215 231
    [Google Scholar]
  21. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas. Int. J. Sys. Bacteriol. 23 333 339
    [Google Scholar]
  22. Rainey P. B., Brodey C. L., Johnstone K. 1993; Identification of a gene cluster encoding three high molecular weight proteins which is required for synthesis of tolaasin by the mushroom pathogen Pseudomonas tolaasii. Mol. Microbiol. 8 643 652
    [Google Scholar]
  23. Reeves P. R. 1992; Variation in O-antigens, niche-specific selection and bacterial populations. FEMS Microbiol. Lett. 100 509 516
    [Google Scholar]
  24. Rosselló R., Garcia-Valdes E., Lalucat J., Ursing J. 1991; Genotypic and phenotypic diversity of Pseudomonas stutzeri. Syst. Appl. Microbiol. 14 150 157
    [Google Scholar]
  25. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy: the principles and practice of numerical classification W. H. Freeman; San Francisco:
    [Google Scholar]
  26. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43 159 271
    [Google Scholar]
  27. Stewart G. J., Sinigalliano C. D. 1991; Exchange of chromosomal markers by natural transformation between the soil isolate, Pseudomonas stutzeri JM300, and the marine isolate, P. stutzeri strain Zobell. Antonie van Leeuwenhoek J. Microbiol. 59 19 25
    [Google Scholar]
  28. Suwanto A., Kaplan S. 1989; Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: genome size, fragment identification, and gene localization. J. Bacteriol. 171 5840 5849
    [Google Scholar]
  29. Thompson I. P., Rainey P. B. Submitted for publication
  30. Woo G. J., McCord J. D. 1991; Maltotetraose production using Pseudomonas stutzeri exo-alpha-amykase in a membrane recycle bioreactor. J. Food Sci. 56 1019 1023
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-1-54
Loading
/content/journal/ijsem/10.1099/00207713-44-1-54
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error