1887

Abstract

Abstract

We recently reported a genus-specific PCR for the mycobacterial gene. In the present study, we have determined the nucleotide sequences of the gene from 19 mycobacterial species (, , BCG, , , , , , , , , avium, , , , M. , and M. On the basis of the amplified gene nucleotide sequences, we constructed a phylogenetic tree of the mycobacterial species by using the neighbor-joining method and unweighted pairwise grouping method of arithmetic average. We found that the phylogenetic relationship inferred within the slowly growing species was in good agreement with the traditional classification, with three major branches corresponding to Runyon’s groups I, II, and III. An exception was M. , which was phylogenetically closer to the cluster including members of Runyon’s group III than to that of Runyon’s group I. On the other hand, the rapid growers, such as and , did not form a coherent line corresponding to Runyon’s group IV, indicating that our phylogenetic analysis based on the gene reflects the phenotypic characteristics such as pigmentation but not the growth rate. Finally, we revealed the species-specific restriction sites within the amplified gene to differentiate most of the mycobacterial DNA by a combination of PCR with restriction fragment length polymorphism analysis.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-1-159
1994-01-01
2024-11-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/1/ijs-44-1-159.html?itemId=/content/journal/ijsem/10.1099/00207713-44-1-159&mimeType=html&fmt=ahah

References

  1. Ang D., Liberek K., Skowyra D., Zylicz M., Georgopoulos C. 1991; Biological role and regulation of the universally conserved heat shock proteins. J. Biol. Chem. 266 24233 24236
    [Google Scholar]
  2. Baess I. 1979; Deoxyribonucleic acid relatedness among species of slowly growing mycobacteria. Acta Pathol. Microbiol. Immunol. Scand. Sect. B 87 221 226
    [Google Scholar]
  3. Baess I. 1982; Deoxyribonucleic acid relatedness among species of rapidly growing mycobacteria. Acta Pathol. Microbiol. Immunol. Scand. Sect. B 90 371 375
    [Google Scholar]
  4. Böddinghaus B., Rogall T., Flohr T., Blöcker H., Böttger E. C. 1990; Detection and identification of mycobacteria by amplification of rRNA. J. Clin. Microbiol. 28 1751 1759
    [Google Scholar]
  5. Brisson-Noel A., Gicquel B., Lecossier D., Lévy-Frébault V., Nassif X., Hance A. J. 1989; Rapid diagnosis of tuberculosis by amplification of mycobacterial DNA in clinical samples. Lancet ii 1069 1071
    [Google Scholar]
  6. Eisenach K. D., Cave M. D., Bates J. H., Crawford J. T. 1990; Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J. Infect. Dis. 161 977 981
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phytogenies: an approach using the bootstrap. Evolution 39 783 791
    [Google Scholar]
  8. Georgopoulos C., Ang D., Liberek K., Zylicz M. 1990 Stress proteins in biology and medicine 191 221 Cold Spring Harbor Laboratory, Cold Spring Harbor; New York:
    [Google Scholar]
  9. Gonzalez R., Hanna B. A. 1987; Evaluation of Gen-Probe DNA hybridization systems for the identification of Mycobacterium tuberculosis and Mycobacterium avium-intracellulare. Diagn. Microbiol. Infect. Dis. 8 69 78
    [Google Scholar]
  10. Gross W. M., Wayne L. G. 1970; Nucleic acid homology in the genus Mycobacterium. J. Bacteriol. 104 630 634
    [Google Scholar]
  11. Horsburgh C. R. Jr. 1991; Mycobacterium avium complex infection in the acquired immunodeficiency syndrome. N. Engl. J. Med. 324 1332 1338
    [Google Scholar]
  12. Imaeda T., Broslawski G., Imaeda S. 1988; Genomic relatedness among mycobacterial species by nonisotopic blot hybridization. Int. J. Syst. Bacteriol. 38 151 156
    [Google Scholar]
  13. Kwok S., Higuchi R. 1989; Avoiding false positives with PCR. Nature (London) 339 237 238
    [Google Scholar]
  14. Lathigra R. B., Young D. B., Sweeter D., Young R. A. 1988; A gene from M. tuberculosis which is homologous to the dnaJ heat shock protein of E. coli. Nucleic Acids Res. 16 1636
    [Google Scholar]
  15. Minnikin D. E., Minnikin S. M., Parlett J. H., Goodfellow M., Magnusson M. 1984; Mycolic acid patterns of some species of Mycobacterium. Arch. Microbiol. 139 225 231
    [Google Scholar]
  16. Musial C. E., Tice L. S., Stockman L., Roberts G. D. 1988; Identification of mycobacteria from culture using the Gen-Probe rapid diagnostic system for Mycobacterium avium complex and Mycobacterium tuberculosis complex. J. Clin. Microbiol. 26 2120 2123
    [Google Scholar]
  17. Nei M. 1987 Molecular evolutionary genetics Columbia University Press; New York:
    [Google Scholar]
  18. Ogawa T., Sada K. 1949; The quantitative culture method for tubercle bacilli: on the case of cultivation of bacterial suspension. Kekkaku 24 13 18
    [Google Scholar]
  19. Pierre C., Lecossier D., Boussougant Y., Bocart D., Joly V., Yeni P., Hance A. J. 1991; Use of a reamplification protocol improves sensitivity of detection of Mycobacterium tuberculosis in clinical samples by amplification of DNA. J. Clin. Microbiol. 29 712 717
    [Google Scholar]
  20. Pitulle C., Dorsch M., Kazda J., Wolters J., Stackebrandt E. 1992; Phytogeny of rapidly growing members of the genus Mycobacterium. Int. J. Syst. Bacteriol. 42 337 343
    [Google Scholar]
  21. Plikaytis B. B., Gelber R. H., Shinnick T. M. 1990; Rapid and sensitive detection of Mycobacterium leprae using a nested-primer gene amplification assay. J. Clin. Microbiol. 28 1913 1917
    [Google Scholar]
  22. Plikaytis B. B., Plikaytis B. D., Yakrus M. A., Butler W. R., Woodlay C. L., Silcox V. A., Shinnick T. M. 1992; Differentiation of slowly growing Mycobacterium species, including Mycobacterium tuberculosis, by gene amplification and restriction fragment length polymorphism analysis. J. Clin. Microbiol. 30 1815 1822
    [Google Scholar]
  23. Rogall T., Wolters J., Flohr T., Böttger E. 1990; Towards a phytogeny and definition of species at the molecular level within the genus Mycobacterium. Int. J. Syst. Bacteriol. 40 323 330
    [Google Scholar]
  24. Runyon E. H. 1959; Anonymous mycobacteria in pulmonary disease. Med. Clin. North Am. 43 273 290
    [Google Scholar]
  25. Runyon E. H. 1970; Identification of mycobacterial pathogens utilizing colony characteristics. Am. J. Clin. Pathol. 54 578 586
    [Google Scholar]
  26. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. 1985; Enzymatic amplification of ß-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230 1350 1354
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 406 425
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular cloning: a laboratory manual , 2nd ed.. Cold Spring Harbor Laboratory, Cold Spring Harbor; N.Y.:
    [Google Scholar]
  29. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74 5463 5467
    [Google Scholar]
  30. Shanker P., Manjunath N., Mohan K. K., Prasad K., Behari M., Shriniwas, Ahuja G. K. 1991; Rapid diagnosis of tuberculosis meningitis by polymerase chain reaction. Lancet 337 5 7
    [Google Scholar]
  31. Shapiro H. S., Splitter G. A., Welch R. A. 1988; Deoxyribonucleic acid relatedness of Mycobacterium paratuberculosis to other members of the family Mycobacteriaceae. Int. J. Syst. Bacteriol. 38 143 146
    [Google Scholar]
  32. Sjöbring U., Mecklenburg M., Andersen A. B., Miörner H. 1990; Polymerase chain reaction for detection of Mycobacterium tuberculosis. J. Clin. Microbiol. 28 2200 2204
    [Google Scholar]
  33. Sommers H. M., Good R. C. 1985; Mycobacterium. 216 248 Lennette E. H., Balows A., Hausier W. J. Jr., Shadomy H. J. Manual of clinical microbiology , 4th ed.. American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  34. Stahl D. A., Urbance J. W. 1990; The division between fast- and slow-growing species corresponds to natural relationships among the mycobacteria. J. Bacteriol. 172 116 124
    [Google Scholar]
  35. Takewaki S., Okuzumi K., Ishiko H., Nakahara K., Ohkubo A., Nagai R. 1993; Genus-specific polymerase chain reaction for the mycobacterial dnaJ gene and species-specific oligonucleotide probes. J. Clin. Microbiol. 31 446 450
    [Google Scholar]
  36. Tanimura M., Miyamura K., Takeda N. 1985; Construction of a phylogenetic tree of enterovirus 70. Jpn. J. Genet. 60 137 150
    [Google Scholar]
  37. Telenti A., Marchesi F., Balz M., Bally F., Böttger E. C., Bodmer T. 1993; Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J. Clin. Microbiol. 31 175 178
    [Google Scholar]
  38. Tuboly S. 1965; Studies on the antigenic structure of mycobacteria. I. Comparison of the antigenic structure of pathogenic structure and saprophytic mycobacteria. Acta Microbiol. Acad. Sci. Hung. 12 233 240
    [Google Scholar]
  39. Wasem C. F., McCarthy C. M., Murray L. W. 1991; Multilocus enzyme electrophoresis analysis of the Mycobacterium avium complex and other mycobacteria. J. Clin. Microbiol. 29 264 271
    [Google Scholar]
  40. Wit D. D., Steyn L., Shoemaker S., Sogin M. 1990; Direct detection of Mycobacterium tuberculosis in clinical specimens by DNA amplification. J. Clin. Microbiol. 28 2437 2441
    [Google Scholar]
  41. Young D., Lathigra R., Hendrix R., Sweeter D., Young R. A. 1988; Stress proteins are immune targets in leprosy and tuberculosis. Proc. Natl. Acad. Sci. USA 85 4267 4270
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-44-1-159
Loading
/content/journal/ijsem/10.1099/00207713-44-1-159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error