1887

Abstract

Phylogenetic relationships among species of the genus and related taxa were elucidated by studying 16S rRNA sequence information and genomic DNA homology data. The 16S rRNA gene was amplified by the PCR and was sequenced directly by a combined method consisting of cycle sequencing and automated fluorescence detection. Pairwise sequence comparisons and a distance matrix analysis showed that the species could be divided into two major clusters; one cluster included the freshwater and terrestrial species, and the other cluster contained the marine species. The cluster containing the freshwater species also included and was linked more closely to the chemotroph and the aerobic phototroph than to the cluster containing the marine species. Genomic DNA-DNA hybridization data supported the results of 16S ribosomal DNA sequence comparisons. With few exceptions, the marine species can be differentiated phenotypically from the freshwater species on the basis of salt requirement for optimal growth, sulfide tolerance, final oxidation product of sulfide, and polar lipid composition. Thus, we propose that all marine species should be transferred to the genus gen. nov.; comb. nov. is the type species of this genus.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-1-15
1994-01-01
2022-08-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/1/ijs-44-1-15.html?itemId=/content/journal/ijsem/10.1099/00207713-44-1-15&mimeType=html&fmt=ahah

References

  1. Ambler R. P., Bartsch R. G., Daniel M., Hermoso J., Kamen M. D., Meyer T. E. 1979; Cytochrome c2 sequence variation among the recognized species of purple nonsulphur photosynthetic bacteria. Nature (London) 278 659 660
    [Google Scholar]
  2. Brosius J., Palmer J. L., Kennedy J. P., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75 4801 4805
    [Google Scholar]
  3. DeBont J. A. M., Scholten A., Hansen T. A. 1981; DNA-DNA hybridization of Rhodopseudomonas capsulata, Rhodopseudomonas sphaeroides, and Rhodopseudomonas sulfidophila strains. Arch. Microbiol. 128 271 274
    [Google Scholar]
  4. De Ley J. 1992; The proteobacteria: ribosomal RNA cistron similarities and bacterial taxonomy. 2111 2140 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. The prokaryotes , 2nd ed.. Springer-Verlag; Berlin:
    [Google Scholar]
  5. Dickerson R. E. 1980; Evolution and gene transfer in purple photosynthetic bacteria. Nature (London) 283 210 212
    [Google Scholar]
  6. Drynden S. C., Kaplan S. 1990; Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides. Nucleic Acids Res. 18 7267 7277
    [Google Scholar]
  7. Eckersley K., Dow C. S. 1980; Rhodopseudomonas blastica sp. nov.: a member of the Rhodospirillaceae. J. Gen. Microbiol. 119 465 473
    [Google Scholar]
  8. Embley T. M. 1991; The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett. Appl. Microbiol. 13 171 174
    [Google Scholar]
  9. Ezaki T., Dejsirilert S., Yamamoto H., Takeuchi N., Liu S., Yabuuchi E. 1988; Simple and rapid genetic identification of Legionella species with photobiotin-labeled DNA. J. Gen. Appl. Microbiol. 34 191 199
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 783 791
    [Google Scholar]
  11. Gibson J., Stackebrandt E., Zablen L. B., Gupta R., Woese C. R. 1979; A phylogenetic analysis of the purple photosynthetic bacteria. Curr. Microbiol. 3 59 64
    [Google Scholar]
  12. Hansen T. A., Imhoff J. F. 1985; Rhodobacter veldkampii, a new species of phototrophic purple nonsulfur bacteria. Int. J. Syst. Bacteriol. 35 115 116
    [Google Scholar]
  13. Hansen T. A., van Gemerden H. 1972; Sulfide utilization by purple nonsulfur bacteria. Arch. Mikrobiol. 86 49 56
    [Google Scholar]
  14. Hansen T. A., Veldkamp H. 1973; Rhodopseudomonas sulfidophila, nov. spec, a new species of the purple nonsulfur bacteria. Arch. Mikrobiol. 92 45 58
    [Google Scholar]
  15. Higgins D. G., Bleasby H., Fuchs R. 1992; CLUSTAL V: improved software for multiple sequence alignment. Comput. Appl. Biosci. 8 189 191
    [Google Scholar]
  16. Hiraishi A. 1992; Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett. Appl. Microbiol. 15 210 213
    [Google Scholar]
  17. Hiraishi A. Phylogenetic affiliations of Rhodoferax fermentons and related species of phototrophic bacteria as determined by automated 16S rDNA sequencing. Curr. Microbiol. in press
    [Google Scholar]
  18. Hiraishi A., Hoshino Y. 1984; Distribution of rhodoquinone in Rhodospirillaceae and its taxonomic implications. J. Gen. Appl. Microbiol. 30 435 448
    [Google Scholar]
  19. Hiraishi A., Hoshino Y., Kitamura H. 1984; Isoprenoid quinone composition in the classification of Rhodospirillaceae. J. Gen. Appl. Microbiol. 30 197 210
    [Google Scholar]
  20. Hiraishi A., Hoshino Y., Satoh T. 1991; Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the “Rhodocyclus gelatino-sus-like” group. Arch. Microbiol 155 330 336
    [Google Scholar]
  21. Hiraishi A., Ueda Y. Unpublished data
  22. Imhoff J. F. 1984; Quinones of phototrophic purple bacteria. FEMS Microbiol. Lett. 25 85 89
    [Google Scholar]
  23. Imhoff J. F. 1989; Genus Rhodobacter Imhoff, Trüper and Pfennig 1984, 342VP . 1668 1672 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  24. Imhoff J. F. 1991; Polar lipids and fatty acids in the genus Rhodobacter. Syst. Appl. Microbiol. 14 228 234
    [Google Scholar]
  25. Imhoff J. F., Triiper H. G., Pfennig N. 1984; Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria.” Int. J. Syst. Bacteriol. 34 340 343
    [Google Scholar]
  26. Ivanova T. L., Turova T. P., Antonov A. S. 1988; DNA-DNA hybridization studies on some purple nonsulfur bacteria. Syst. Appl. Microbiol. 10 259 263
    [Google Scholar]
  27. Johnson J. L. 1984; Nucleic acids in bacterial classification. 8 11 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  28. Kato S., Urakami T., Komagata K. 1985; Quinone systems and cellular fatty acid composition in species of Rhodospirillaceae genera. J. Gen. Appl. Microbiol. 31 381 398
    [Google Scholar]
  29. Kawasaki H., Hoshino Y., Hirata A., Yamasato K. Is intracytoplasmic membrane structure a generic criterion? It does not coincide with phylogenetic interrelationships among phototrophic purple nonsulfur bacteria. Arch. Microbiol. in press
    [Google Scholar]
  30. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 16 111 120
    [Google Scholar]
  31. Kompantseva E. I. 1985; New halophilic purple bacteria, Rhodobacter euryhalinus sp. nov. Mikrobiogiya 54 974 982 (In Russian.)
    [Google Scholar]
  32. Ludwig W., Mittenhuber G., Friedrich C. G. 1993; Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int. J. Syst. Bacteriol. 43 363 367
    [Google Scholar]
  33. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3 208 218
    [Google Scholar]
  34. Murray V. 1989; Improved double stranded DNA sequencing using the linear polymerase chain reaction. Nucleic Acids Res. 17 8889
    [Google Scholar]
  35. Neutzling O., Imhoff J. F., Trüper H. G. 1984; Rhodopseudomonas adriatica sp. nov., a new species of the Rhodospirillaceae, dependent on reduced sulfur compounds. Arch. Microbiol. 137 256 261
    [Google Scholar]
  36. Pfennig N., Truper H. G. 1971; Type and neotype strains of the species of phototrophic bacteria maintained in pure culture. Int. J. Syst. Bacteriol. 21 19 24
    [Google Scholar]
  37. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 406 425
    [Google Scholar]
  38. Satoh T., Hoshino Y., Kitamura H. 1976; Rhodopseudomonas sphaeroides forma sp. denitrificans, a denitrifying strain as a subspecies of Rhodopseudomonas sphaeroides. Arch. Microbiol. 108 265 269
    [Google Scholar]
  39. Stackebrandt E., Murray R. G. E., Trüper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.”. Int. J. Syst. Bacteriol. 38 321 325
    [Google Scholar]
  40. Tayeh M. A., Madigan M. T. 1992; Comparative immunological analyses of the citric acid cycle enzyme malate dehydrogenase from phototrophic purple bacteria. Syst. Appl. Microbiol. 15 331 335
    [Google Scholar]
  41. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandier O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Trüper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37 463 464
    [Google Scholar]
  42. Weckesser J., Mayer H. 1987; Lipopolysaccharide aus phototrophen Bakterien. Forum Mikrobiol. 10 242 248
    [Google Scholar]
  43. Weckesser J., Mayer H. 1988; Different lipid A types in lipopolysaccharides of phototrophic and related non-phototrophic bacteria. FEMS Microbiol. Rev. 54 143 154
    [Google Scholar]
  44. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173 697 703
    [Google Scholar]
  45. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51 221 271
    [Google Scholar]
  46. Woese C. R., Gibson J., Fox G. E. 1980; Do genealogical patterns in purple photosynthetic bacteria reflect interspecific gene transfer?. Nature (London) 283 212 214
    [Google Scholar]
  47. Woese C. R., Stackebrandt E., Weisburg W. G., Paster B. J., Madigan M. T., Fowler V. J., Hahn C. M., Blanz P., Gupta R., Nealson K. H., Fox G. E. 1984; The phylogeny of purple bacteria: the alpha subdivision. Syst. Appl. Microbiol. 5 315 326
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-1-15
Loading
/content/journal/ijsem/10.1099/00207713-44-1-15
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error