DNA Relatedness among Serovars Free

Abstract

The genetic relationships of and of the serovars were assessed from measurements of DNA reassociation. A study of 8 to 10 strains each of 13 of the most commonly encountered serovars revealed that the levels of intragroup DNA relatedness for most serovars ranged from 90 to 100%. In contrast, serovars canadensis and kenyae consisted of two DNA relatedness groups, each of which exhibited levels of intragroup relatedness of 80% or higher and levels of intergroup relatedness of 60 to 70%. Analyses of DNA relatedness performed with all of the serovars revealed that the taxa were segregated into 11 phena differentiated from each other at about the 65% level; within each phenon the level of relatedness was 80% or higher. Three phena contained strains belonging to more than one serovar; serovars alesti and dendrolimus clustered in phenon 1, serovars aizawai, kurstaki, galleriae, and morrisoni clustered in phenon 7, and serovar darmstadiensis and some strains of serovar kenyae clustered in phenon 11. The levels of DNA relatedness between and strains ranged between 65 and 70%. My results suggest that many of the serovars are genetically distinct but closely related.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-1-125
1994-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/1/ijs-44-1-125.html?itemId=/content/journal/ijsem/10.1099/00207713-44-1-125&mimeType=html&fmt=ahah

References

  1. Angus T. A. 1954; A bacterial toxin paralyzing silkworm larvae. Nature (London) 173 545
    [Google Scholar]
  2. Ash C., Farrow J. A. E., Dorsch M., Stackebrandt E., Collins M. D. 1991; Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41 343 346
    [Google Scholar]
  3. Baumann L., Okamoto K., Unterman B. M., Lynch M. J., Baumann P. 1984; Phenotypic characterization of Bacillus thuringiensis and Bacillus cereus. J. Invertebr. Pathol. 44 329 341
    [Google Scholar]
  4. Berliner E. 1911; Uber die Schlaffsucht der Mehlmottenraupe. Z. Gesamte Getreidew. 3 63 70
    [Google Scholar]
  5. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872. 1105 1207 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Bergey’s manual of systematic bacteriology 2 Williams and Wilkins; Baltimore:
    [Google Scholar]
  6. Dean D. H. 1984; Biochemical genetics of the bacterial insect-control agent Bacillus thuringiensis. Basic principals and prospects for genetic engineering. Biotechnol. Genet. Eng. Rev. 2 341 363
    [Google Scholar]
  7. de Barjac H.A. Bonnefoi. 1962; Essai de classification biochimique et serologique de 24 souches de Bacillus du type thuringiensis. Entomophaga 7 5 31
    [Google Scholar]
  8. de Baijac H.A. Bonnefoi. 1968; A classification of strains of Bacillus thuringiensis Berliner with key to their differentiation. J. Invertebr. Pathol. 11 335 347
    [Google Scholar]
  9. De Ley J., Cattoir H., Raynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12 133 142
    [Google Scholar]
  10. Dzink J. L., Sheenan M. T., Socransky S. S. 1990; Proposal of three subspecies of Fusobacterium nucleatum Knorr 1922: Fusobacterium nucleatum subsp. nucleatum subsp. nov., comb, nov.; Fusobacterium nucleatum subsp. polymorphum subsp. nov., nom. rev., comb, nov.; and Fusobacterium nucleatum subsp. vincentii subsp. nov., nom. rev., comb. nov. Int. J. Syst. Bacteriol. 40 74 78
    [Google Scholar]
  11. Gonzales J. M. Jr., Carlton B. C. 1984; A large transmissible plasmid is required for crystal production in Bacillus thuringiensis variety israelensis. Plasmid 11 28 38
    [Google Scholar]
  12. Gonzales J. M. Jr., Dulmage H. T., Carlton B. C. 1981; Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis. Plasmid 5 351 365
    [Google Scholar]
  13. Gordon R. E., Haynes W. C., Pang C. H. 1973 The genus Bacillus. Agricultural handbook no. 427 U. S. Department of Agriculture; Washington, D.C.:
    [Google Scholar]
  14. Haynes W. C., Wickerham L. J., Hesseltine C. W. 1955; Maintenance of cultures of industrially important microorganisms. Appl. Microbiol. 3 361 368
    [Google Scholar]
  15. Heimpfel A. M., Angus T. A. 1958; The taxonomy of insect pathogens related to Bacillus cereus Frankland and Frankland. Can. J. Microbiol. 4 531 541
    [Google Scholar]
  16. Hofte H., Whiteley H. R. 1989; Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53 242 255
    [Google Scholar]
  17. Ishiwata S. 1901; On a kind of severe flacherie (sotto disease) (I.). Dainihon Sanshi Kaiho 9 1 5
    [Google Scholar]
  18. Johnson J. L. 1986; Nucleic acids in bacterial classification. 972 975 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Bergey’s manual of systematic bacteriology 2 Williams and Wilkins; Baltimore:
    [Google Scholar]
  19. Kaneko T., Nozaki R., Aizawa K. 1978; Deoxyribonucleic acid relatedness between Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Microbiol. Immunol. 22 639 641
    [Google Scholar]
  20. Kloos W. E., Wolfshohl J. F. 1991; Staphylococcus cohnii subspecies: Staphylococcus cohnii subsp. cohnii subsp. nov. and Staphylococcus cohnii subsp. ureafyticum subsp. nov. Int. J. Syst. Bacteriol. 41 284 289
    [Google Scholar]
  21. Krych V. K., Johnson J. L., Yousten A. A. 1980; Deoxyribonucleic acid homologies among strains of Bacillus sphaericus. Int. J. Syst. Bacteriol. 30 476 484
    [Google Scholar]
  22. Maniatis T., Fritsch E. F., Sambrook J. 1982; Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y.:
    [Google Scholar]
  23. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3 208 218
    [Google Scholar]
  24. Nakamura L. K., Swezey J. 1983; Taxonomy of Bacillus circulons Jordan 1890: base composition and reassociation of deoxyribonucleic acid. Int. J. Syst. Bacteriol. 33 46 52
    [Google Scholar]
  25. Seki T., Chung C., Mikami H., Oshima Y. 1978; Deoxyribonucleic acid homology and taxonomy of the genus Bacillus. Int. J. Syst. Bacteriol. 28 182 189
    [Google Scholar]
  26. Smith N. R., Gordon R. E., Clark F. E. 1946; Aerobic sporeforming bacteria. Miscellaneous Publication 559. U. S. Department of Agriculture; Washington, D.C.:
    [Google Scholar]
  27. Sneath P. H. A., Sokal R. R. 1973; Numerical taxonomy. W. H. Freeman and Co.; San Francisco:
    [Google Scholar]
  28. Sommerville H. J., Jones M. L. 1972; DNA competition studies within the Bacillus cereus group of bacilli. J. Gen. Microbiol. 73 257 265
    [Google Scholar]
  29. Stahly D. P., Andrews R. E., Yousten A. A. 1992; The genus Bacillus—insect pathogens. 1670 1745 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. The prokaryotes , 2nd ed.. Springer-Verlag; New York:
    [Google Scholar]
  30. Ward E. S., Ellar D. J. 1983; Assignment of the deltaendotoxin gene of Bacillus thuringiensis var. israelensis to a specific plasmid by curing analysis. FEBS Lett. 180 45 49
    [Google Scholar]
  31. Willems A., Goor M., Thielemans S., Gillis M., Kersters K., De Ley J. 1992; Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb, nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int. J. Syst. Bacteriol. 42 107 119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-1-125
Loading
/content/journal/ijsem/10.1099/00207713-44-1-125
Loading

Data & Media loading...

Most cited Most Cited RSS feed