1887

Abstract

Phylogenetic relationships among strains of and related taxa were determined by 16S rDNA sequencing and genomic DNA hybridization techniques. The 16S rRNA gene was amplified by the polymerase chain reaction with a pair of eubacterial consensus primers and sequenced directly by using an automated fluorescent DNA sequencer. Sequence comparisons and distance matrix tree analysis revealed that IAM 12136 (= N. C. Dondero 106, type strain) and sp. ATCC 19324 formed a lineage with in the β subclass of IAM 12670 (= P. R. Dugan 115) was shown to belong to another cluster with and in the β subclass. In contrast, IAM 12669 (= K. Crabtree I-16-M) proved to be a member of the ± subclass of the , closely related to Genomic DNA hybridization studies also showed that there is genetic diversity among the strains currently designated , but typical strains, characterized by their production of rhodoquinones, are highly related to each other and can be regarded as a single species. On the basis of the molecular data, together with the early phenotypic and chemotaxonomic information, we have emended the generic description of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-43-4-826
1993-10-01
2022-11-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/43/4/ijs-43-4-826.html?itemId=/content/journal/ijsem/10.1099/00207713-43-4-826&mimeType=html&fmt=ahah

References

  1. Butterfield C. T. 1935; Studies of sewage purification. II. A zoogloea-forming organism found in activated sludge. Public Health Rep. 50:671–684
    [Google Scholar]
  2. Crabtree K., McCoy E. 1967; Zoogloea ramigera Itzigsohn, identification and description. Int. J. Syst. Bacteriol. 17:1–10
    [Google Scholar]
  3. Deinema M. H., Zevenhuizen L. P. T. M. 1971; Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. Arch. Mikrobiol. 78:42–57
    [Google Scholar]
  4. De Ley J. 1992; The Proteobacteria: ribosomal RNA cistron similarities and bacterial taxonomy p. 2111—2140. In Balow A., Triiper H. G., Dworkin M., Harder W., Schleifer K.-H. (ed.) The prokaryotes, 2nd ed. Springer-Verlag; New York:
    [Google Scholar]
  5. De Vos P., De Ley J. 1983; Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 33:487–509
    [Google Scholar]
  6. De Vos P., Goor M., Gillis M., De Ley J. 1985; Ribosomal ribonucleic acid cistron similarities of phytopathogenic Pseudomonas species. Int. J. Syst. Bacteriol. 35:169–184
    [Google Scholar]
  7. Dias F. F., Bhat J. V. 1964; Microbial ecology of activated sludge. I. Dominant bacteria. Appl. Microbiol. 12:412–417
    [Google Scholar]
  8. Dugan P. R., Stoner D. L., Pickrum H. M. 1992; The genus Zoogloea. p. 3952–3964 In Balow A., Triiper H. G., Dworkin M., Harder W., Schleifer K.-H. (ed.) The prokaryotes, 2nd ed. Springer-Verlag; New York:
    [Google Scholar]
  9. Ezaki T., Dejsirilert S., Yamamoto H., Takeuchi N., Liu S., Yabuuchi E. 1988; Simple and rapid genetic identification of Legionella species with photobiotin-labeled DNA. J. Gen Appl. Microbiol. 34:191–199
    [Google Scholar]
  10. Friedman B. A., Dugan P. R. 1968; Identification of Zoogloea species and the relationship to zoogloeal matrix and floe formation. J. Bacteriol. 95:1903–1909
    [Google Scholar]
  11. Heukelekian H., Littman M. L. 1939; Carbon and nitrogen transformations in the purification of sewage by the activated sludge process. II. Morphological and biochemical studies of zoogloeal organisms. Sewage Works J. 11:752–763
    [Google Scholar]
  12. Higgins D. G., Fuchs R. 1992; CLUSTAL V: improved software for multiple sequence alignment. Comput. Appl. Biosci. 8:189–191
    [Google Scholar]
  13. Hiraishi A. 1992; Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl. Microbiol. 15:210–213
    [Google Scholar]
  14. Hiraishi A., Satoh T. 1991; Rhodoferax fermentans gen. nov., sp. nov., a photo trophic purple nonsulfur bacterium previously referred to as the “Rhodocyclus gelatino-ms-like” group. Arch. Microbiol. 155:330–336
    [Google Scholar]
  15. Hiraishi A., Komagata K. 1989; Isolation of rhodoquinone-containing chemoorganotrophic bacteria from activated sludge. FEMS Microbiol. Lett. 58:55–58
    [Google Scholar]
  16. Hiraishi A., Komagata K. 1989; Effects of the growth medium composition on menaquinone homolog formation in Micrococcus luteus. J. Gen. Appl. Microbiol. 35:311–318
    [Google Scholar]
  17. Hiraishi A., Shin Y. K., Sugiyama J., Komagata K. 1992; Isoprenoid quinones and fatty acids of Zoogloea. Antonie van Leeuwenhoek 61:231–236
    [Google Scholar]
  18. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T. 1984; Estimation of DNA base composition by high performance liquid chromatography of its nuclease PI hydrolysate. Agric. Biol. Chem. 48:3169–3172
    [Google Scholar]
  19. Kato A., Izaki K., Takahashi H. 1971; Floc-forming bacteria isolated from activated sludge. J. Gen. Appl. Microbiol. 17:439
    [Google Scholar]
  20. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–120
    [Google Scholar]
  21. Kiuchi K., Kuraishi H., Murooka H., Aida K., Uemura T. 1968; Floe formation in activated sludge. II. Identification of twelve representative strains isolated from activated sludge. J. Gen. Appl. Microbiol. 14:399–409
    [Google Scholar]
  22. MacKinney R. E., Horwood M. P. 1952; Fundamental approach to the activated sludge process. I. Floc-producing bacteria. Sewage Ind. Wastes 24. 117–123
    [Google Scholar]
  23. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  24. Oyaizu-Masuchi Y., Komagata K. 1988; Isolation of free- living nitrogen fixing bacteria from the rhizosphere of rice. J. Gen. Appl. Microbiol. 34:127–164
    [Google Scholar]
  25. Palleroni N. J. 1984; Family I Pseudomonadaceae Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith 1917, 555AL, p. 141. In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol. 1 The Williams & Wilkins Co.: Baltimore;
    [Google Scholar]
  26. Palleroni N. J. 1992; Introduction to the family Pseudomonadaceae p. 3071—3085. In Balow A., Triiper H. G., Dworkin M., Harder W., Schleifer K.-H. (ed.) The prokaryotes, 2nd ed. Springer-Verlag; New York:
    [Google Scholar]
  27. Satiou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  28. Stackebrandt E., Murray R. G. E., Triiper H. G. 1992; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.”. Int. J. Syst. Bacteriol. 38:321–325
    [Google Scholar]
  29. Strand S. E., McDonnell A. J., Unz R. F. 1988; Oxygen and nitrate reduction kinetics of a nonflocculating strain of Zoogloea ramigera. Antonie van Leeuwenhoek 54:245–255
    [Google Scholar]
  30. Tamaoka J., Ha D.-M., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Coma-monas acidovorans comb. nov. and Comamonas testosteroni comb, nov., with an emended description of the genus Comamonas. Int. J. Syst. Bacteriol. 37:52–59
    [Google Scholar]
  31. Ueda S., Earle R. 1972; Microflora of activated sludge. J. Gen. Appl. Microbiol. 18:239–248
    [Google Scholar]
  32. Unz R. F. 1971; Neotype strain of Zoogloea ramigera Itzig-sohn. Int. J. Syst. Bacteriol. 21:91–99
    [Google Scholar]
  33. Unz R. F. 1984; Genus IV Zoogloea Itzigsohn 1868, 30AL. p. 214–219 In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology, vol. 1. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  34. Wattie E. 1943; Cultural characteristics of zoogloea-forming bacteria isolated from activated sludge and trickling filters. Sewage Works J. 15:476–489
    [Google Scholar]
  35. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Triiper H. G. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37463–464
    [Google Scholar]
  36. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:211–271
    [Google Scholar]
  37. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. 1992; Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol. 36:1251–1275
    [Google Scholar]
  38. Zvirbulis E., Hatt H. D. 1967; Status of the generic name Zoogloea and its species. Int. J. Syst. Bacteriol. 17:11–21
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-43-4-826
Loading
/content/journal/ijsem/10.1099/00207713-43-4-826
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error