1887

Abstract

Using a method known as low-frequency restriction fragment analysis (LFRFA) (M. L. Beyazova and M. P. Lechevalier, Int. J. Syst. Bacteriol. 42:422-433, 1992), we determined the molecular weights of I restriction fragments of DNAs by pulsed-field gel electrophoresis. The levels of similarity of fragment patterns among strains were determined by using the simple matching coefficient, and clustering was performed by using the unweighted pair group with mathematical average algorithm. A total of 59 strains representing eight species and the numerically classified taxon group A18 (S. T. Williams, M. Goodfellow, G. Alderson, E. M. H. Wellington, P. H. A. Sneath, and M. J. Sackin, J. Gen. Microbiol. 129:1743-1813, 1983) were studied. Forty-two strains (six species) formed eight clusters at levels of similarity of more than 80%; 17 strains (including the entire group) were unclustered. Cluster 1 contained all of the strains studied plus two strains of and two strains of Cluster 2 contained 8 of the 12 strains examined plus one strain each of and Cluster 3 was heterogeneous in terms of species. Cluster 4 contained two strains; cluster 5 contained three strains; cluster 6 contained three strains; and clusters 7 and 8 contained seven and three strains, respectively. The group strains exhibited no clustering among themselves or with the other species examined. Some species which exhibited high levels of similarity (85 to 95%) in physiological tests (e.g., and the strains in cluster 2) exhibited high levels of similarity in the LFRFA (84 and 81%, respectively). Other taxa ( group) which exhibited equally high levels of physiological similarity (90%) appeared to be unrelated as determined by the LFRFA. Species with lower levels of physiological similarity (e.g., [75%], [63%], and [68%]) exhibited low levels of LFRFA similarity (75, 64, and 54%, respectively). High levels of DNA-DNA relatedness (<90%) () were reflected in high levels of similarity as determined by the LFRFA (75 to 100%); lower levels of DNA-DNA relatedness (ca. 70%) ( group) were reflected in low levels of LFRFA similarity (strains not clustered). We concluded that the presently used physiological tests reflect too small a portion of the genome to be universally useful in streptomycete species characterization. In contrast, high levels of DNA-DNA relatedness (<90%) and high LFRFA similarity values will probably both be valuable in species delineation in actinomycetes.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-43-4-674
1993-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/43/4/ijs-43-4-674.html?itemId=/content/journal/ijsem/10.1099/00207713-43-4-674&mimeType=html&fmt=ahah

References

  1. Allardet-Servent A., Bourg G., Ramuz M., Pages M., Beilis M., Roizes G. 1988; DNA polymorphism in strains of the genus Brucella. J. Bacteriol. 170:4603–4607
    [Google Scholar]
  2. Arbeit R. D., Arthur M., Dunn R., Kim C., Selander R. K., Goldstein R. 1990; Resolution of recent evolutionary divergence among Escherichia coli from related lineages: the application of pulsed field electrophoresis to molecular epidemiology. J. Infect. Dis. 161:230–235
    [Google Scholar]
  3. Beyazova M. L., Lechevalier M. P. 1992; Low-frequency restriction fragment analysis of Frankia strains (Actinomyce-tales). Int. J. Syst. Bacteriol. 42:422–433
    [Google Scholar]
  4. Birch A., Hausler A., Hutter R. 1990; Genome rearrangement and genetic instability in Streptomyces spp. J. Bacteriol. 172:4138–4142
    [Google Scholar]
  5. Bohm J., Karch H. 1992; DNA fingerprinting of Escherichia coli 0157:H7 strains by pulsed-field gel electrophoresis. J. Clin. Microbiol. 30:2169–2172
    [Google Scholar]
  6. Clark C. A., Watson B. 1983; Susceptibility of woody species of Convolvulaceae to root-infecting pathogens of sweet potato. Plant Dis. 69:907–909
    [Google Scholar]
  7. Crameri R. G., Hintermann G., Hutter R. 1983; Deoxyribonucleic acid restriction endonuclease fingerprint characterization of actinomycete strains. Int. J. Syst. Bacteriol. 33:652–655
    [Google Scholar]
  8. Fierro J. F., Parra F., Quiros L. M., Hardisson C., Salas J. A. 1987; Heterogeneity of the ribosomal pattern in mycelium of Streptomyces species. FEMS Microbiol. Lett. 41:283–287
    [Google Scholar]
  9. Gordon R. E. 1966; Some criteria for the recognition of Nocardia madurae (Vincent) Blanchard. J. Gen. Microbiol. 45:355–364
    [Google Scholar]
  10. Gordon R. E. 1967; The taxonomy of soil bacteria. p. 293–321 In Gray T. R. G., Parkinson B. (ed.) The ecology of soil bacteria Liverpool University Press; Liverpool, England:
    [Google Scholar]
  11. Gordon R. E., Horan A. C. 1968; A piecemeal description of Streptomyces griseus (Krainsky) Waksman and Henrici. J. Gen. Microbiol. 50:223–233
    [Google Scholar]
  12. Grothues D., Tummier B. 1991; New approaches in genome analysis by pulsed-field gel electrophoresis: application to the analysis of Pseudomonas species. Mol. Microbiol. 5:2763–2776
    [Google Scholar]
  13. Hershberger C. L., Arnold B., Larson J., Skatrud P., Reynolds P., Szoke P., Rosteck R. F. Jr., Swartling J., McGilvray D. 1989; Role of giant linear plasmids in the biosynthesis of macrolide and polyketide antibiotics. p. 147–155 In Hershberger C. L., Queener S. W., Hegeman G. (ed.) Genetics and molecular biology of industrial microorganisms American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  14. Hightower R. C., Metge D. W., Santi D. V. 1987; Plasmid migration using orthogonal-field-alternation gel electrophoresis. Nucleic Acids Res. 15:8387–8398
    [Google Scholar]
  15. Kalkus J., Reh M., Schlegel H. G. 1990; Hydrogen autotrophy of Nocardia opaca strains is encoded by linear megaplasmids. J. Gen. Microbiol. 136:1145–1151
    [Google Scholar]
  16. Kieser H. M., Kieser T., Hopwood D. A. 1992; A combined genetic and physical map of the Streptomyces coelicolor A3/2 chromosome. J. Bacteriol. 174:5496–5507
    [Google Scholar]
  17. Kinashi H., Shimaji M. 1987; Detection of giant linear plasmids in antibiotic producing strains of Streptomyces by the OFAGE technique. J. Antibiot. 40:913–916
    [Google Scholar]
  18. Kirby R., Rybicki E. P. 1986; Enzyme-linked immunosorbent assay (ELISA) as a means of taxonomic analysis of Streptomyces and related organisms. J. Gen. Microbiol. 132:1891–1894
    [Google Scholar]
  19. Labeda D. P. (Northern Regional Research Center, Peoria, III.) 1991 Personal communication
  20. Labeda D. P. 1992; DNA-DNA hybridization in the systematics of Streptomyces. Gene 115:249–253
    [Google Scholar]
  21. Labeda D. P., Lyons A. J. 1991; Deoxyribonucleic acid relatedness among species of the Streptomyces cyaneus cluster. Syst. Appl. Microbiol. 14:158–164
    [Google Scholar]
  22. Labeda D. P., Lyons A. J. 1991; The Streptomyces violaceusniger cluster is heterogeneous in DNA relatedness among strains: emendation of the descriptions of 5. violaceusniger and Streptomyces hygroscopicus. Int. J. Syst. Bacteriol. 41:398–401
    [Google Scholar]
  23. Labeda D. P., Lyons A. J. 1992; DNA relatedness among strains of the sweet potato pathogen Streptomyces ipomoea (Person and Martin 1940) Waksman and Henrici 1948. Appl. Environ. Microbiol. 58:532–535
    [Google Scholar]
  24. Leblond P., Francou F. X., Simonet J.-M., Decaris B. 1990; Pulsed-field gel electrophoresis analysis of the genome of Streptomyces ambofaciens strains. FEMS Microbiol. Lett. 72:79–88
    [Google Scholar]
  25. Lechevalier H., Lechevalier M. P. 1981; Introduction to the order Actinomycetales. p. 1915–1922 In Starr M. P., Stolp H., Triiper H. G., Balows A., Schlegel H. G. (ed.) The prokaryotes vol. 2: Springer-Verlag; Berlin:
    [Google Scholar]
  26. Lechevalier M. P. 1991 Unpublished data
  27. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular cloning: a laboratory manual, p. 438 Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y.:
    [Google Scholar]
  28. McClelland M., Jones R., Patel Y., Nelson M. 1987; Restriction endonucleases for pulsed-field mapping of bacterial genomes. Nucleic Acids Res. 15:5985–6005
    [Google Scholar]
  29. McGuire J. M., Boniece W. S., Higgens C. E., Huehn M. M., Stark W. M., Westhead J., Wolfe R. N. 1961; Tylosin, a new antibiotic. I. Microbiological studies. Antibiot. Chemother. (Washington, D.C.) 11:320–327
    [Google Scholar]
  30. Mishra S. K., Gordon R. E., Barnett D. A. 1980; Identification of nocardiae and streptomycetes of medical importance. J. Clin. Microbiol. 11:728–736
    [Google Scholar]
  31. Ochi K. 1992; Polyacrylamide gel electrophoresis analysis of ribosomeal protein: a new approach for actinomycete taxonomy. Gene 115:261–265
    [Google Scholar]
  32. Pridham T. G., Tresner H. D. 1974; Family VII. Strepto-mycetaceae Waksman and Henrici. p. 747–845 In Buchanan R. E., Gibbons N. E. (ed.) Bergey’s manual of determinative bacteriology, 8th ed. Williams & Wilkins; Baltimore:
    [Google Scholar]
  33. Shirling E. B., Gottlieb D. 1972; Cooperative description of type strains of Streptomyces. Int. J. Syst. Bacteriol. 22:265–394
    [Google Scholar]
  34. Smith C. L. (Columbia University) 1986 Personal communication
  35. Smith C. L., Cantor C. R. 1987; Purification, specific fragmentation and separation of large DNA molecules. Methods Enzymol. 55:449–467
    [Google Scholar]
  36. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy W. H. Freeman and Co.; San Francisco:
    [Google Scholar]
  37. Waksman S. A. 1967; The actinomycetes p. 249. Ronald Press; New York:
    [Google Scholar]
  38. Williams S. T., Goodfellow M., Alderson G. 1989; Genus Streptomyces Waksman and Henrici 1943, 339AL. p. 2452–2492 In Williams S. T., Sharpe M. E., Holt J. B. (ed.) Bergey’s manual of systematic bacteriology vol. 4 Williams & Wilkins; Baltimore:
    [Google Scholar]
  39. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J. 1983; Numerical classification of Streptomyces and related genera. J. Gen. Microbiol. 129:1743–1813
    [Google Scholar]
  40. Witt D., Stackebrandt E. 1990; Unification of the genera Streptoverticillium and Streptomyces and amendation of Streptomyces Waksman and Henrici 1943, 339AL. Syst. Appl. Microbiol 13:361–371
    [Google Scholar]
  41. Zhou X., Deng X., Firmin J. L., Hopwood D. A., Kieser T. 1988; Site-specific degradation of Streptomyces lividans DNA during electrophoresis in buffers contaminated with ferrous iron. Nucleic Acids Res. 16:4341–4352
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-43-4-674
Loading
/content/journal/ijsem/10.1099/00207713-43-4-674
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error