1887

Abstract

The genera and , which constitute the family , are difficult to differentiate on the basis of phenotypic and chemotaxonomic attributes. DNA-rRNA hybridization studies have indicated that some spp. have the same level of relationship to the type species of the genus as some spp. A phylogenetic analysis of the 16S rRNA sequences of seven members of the indicated that the members of the genera and do not form separate monophyletic subgroups, confirming the lack of any phylogenetic support for retention of these taxa as separate genera. A phylogenetic analysis of the 16S rRNA sequence of confirmed that this species belongs in the All of the members of the examined and possess a cytosine residue at position 486 ( numbering), which is an extremely rare attribute among the prokaryotes and has been reported in only one other species, Several other signature characteristics which define this group in the gamma subclass of the are identified. The Jukes-Cantor distances between members of the family , including , range from 0.086 to 0.000 (the levels of similarity between the 16S rRNA sequences range from 92.6 to 100%). The members of the genera , and form a monophyletic group and share common chemotaxonomic and phenotypic characteristics. Subgroups containing members of the genera , and cannot be resolved on the basis of phylogenetic, chemotaxonomic, or phenotypic data. Our data indicate that the members of the genera , and should be united in a single genus.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-43-4-665
1993-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/43/4/ijs-43-4-665.html?itemId=/content/journal/ijsem/10.1099/00207713-43-4-665&mimeType=html&fmt=ahah

References

  1. Akagawa M., Yamasato K. 1989; Synonomy of Alcali-genes aquamarinus, Alcaligenes faecalis subsp. homari, and Deleya aesta: Deleya aquamarinus comb. nov. as the type species of the genus Deleya. Int. J. Syst. Bacteriol. 39:462–466
    [Google Scholar]
  2. Amann R. I., Lin C., Key R., Montgomery L., Stahl D. 1992; Diversity among Fibrobacter isolates: towards a phylogenetic classification. Syst. Appl. Microbiol. 15:23–31
    [Google Scholar]
  3. Baumann L., Baumann P., Mandel M., Allen R. D. 1972; Taxonomy of aerobic marine eubacteria. J. Bacteriol. 110:402–429
    [Google Scholar]
  4. Baumann L., Bowditch R. D., Baumann P. 1983; Description of Deleya gen. nov. created to accommodate the marine species Alcaligenes aestus A. pacificus A. cupidus A. venus-tus, and Pseudomonas marina. Int. J. Syst. Bacteriol. 33:793–802
    [Google Scholar]
  5. Dobson S. J. 1988 B.Sc. thesis, University of Tasmania, Hobart, Tasmania, Australia
  6. Dobson S. J., Colwell R. R., McMeekin T. A., Franzmann P. D. 1993; Direct sequencing of the polymerase chain reaction-amplified 16S rRNA gene of Flavobacterium gondwa- nense sp. nov. and Flavobacterium salegens sp. nov., two new species from a hypersaline Antarctic lake. Int. J. Syst. Bacteriol. 43:77–83
    [Google Scholar]
  7. Edwards U., Rogall T., Blocker H., Emde M., Bottger E. C. 1989; Isolation and direct complete nucleotide determination of entire genes. Characterisation of a gene coding for 16S ribosomal genes. Nucleic Acids Res. 17:7843–7853
    [Google Scholar]
  8. Felsenstein J. 1989; PHYLIP—phytogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  9. Fendrich C. 1988; Halovibrio variabilis gen. nov. sp. nov., Pseudomonas halophila sp. nov. and a new halophilic coccoid eubacterium from Great Salt Lake, Utah, USA. Syst. Appl. Microbiol. 11:36–43
    [Google Scholar]
  10. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42:166–170
    [Google Scholar]
  11. Franzmann P. D., Burton H. R., McMeekin T. A. 1987; Halomonas subglaciescola, a new species of halotolerant bacteria isolated from Antarctica. Int. J. Syst. Bacteriol. 37:27–34
    [Google Scholar]
  12. Franzmann P. D., Tindall B. J. 1990; A chemotaxonomic study of members of the family Halomonadaceae. Syst. Appl. Microbiol. 13:142–147
    [Google Scholar]
  13. Franzmann P. D., Wehmeyer U., Stackebrandt E. 1988; Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst. Appl. Microbiol. 11:16–19
    [Google Scholar]
  14. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J.-C. 1992; Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new extremely halotolerant, hydrocarbon-degrading marine bacterium. Int. J. Syst. Bacteriol. 42:568–576
    [Google Scholar]
  15. Hebert A. M., Vreeland R. H. 1987; Phenotypic comparison of halotolerant bacteria: Halomonas halodurans sp. nov., nom. rev., comb. nov. Int. J. Syst. Bacteriol. 37:347–350
    [Google Scholar]
  16. James S. R., Dobson S. J., Franzmann P. D., McMeekin T. A. 1990; Halomonas meridiana, a new species of extremely halotolerant bacteria isolated from Antarctic saline lakes. Syst. Appl. Microbiol. 13:270–278
    [Google Scholar]
  17. Jantzen E., Bryn K. 1985; Whole-cell and lipopolysaccha- ride fatty acids and sugars of Gram-negative bacteria, p. 145-172. In Goodfellow M., Minnikin D. E. (ed.) Chemical methods in bacterial systematics Academic Press, Inc.; London:
    [Google Scholar]
  18. Kersters K. 1992; The genus Deleya. p. 3189–3197 In Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K.-H. (ed.) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, vol. 4, 2nd ed. Springer-Verlag; New York:
    [Google Scholar]
  19. Kita-Tsukamoto K., Oyaizu H., Nanba K., Simudu U. 1993; Phylogenetic relationships of marine bacteria, mainly members of the family Vibrionaceae, determined on the basis of 16S rRNA sequences. Int. J. Syst. Bacteriol. 43:8–19
    [Google Scholar]
  20. Murray R. G. E., Brenner D. J., Colwell R. R., De Vos P., Goodfellow M., Grimont P. A. D., Pfennig N., Stackebrandt E., Zavarin G. A. 1990; Report of the Ad Hoc Committee on Approaches to Taxonomy Within the Proteobacteria. Int. J. Syst. Bacteriol. 40:213–215
    [Google Scholar]
  21. Olsen G. J., Larsen N., Woese C. R. 1991; The ribosomal RNA database project. Nucleic Acids Res. 19:2017–2021
    [Google Scholar]
  22. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A. 1984; Deleya halophila, a new species of moderately halophilic bacteria. Int. J. Syst. Bacteriol. 34:287–292
    [Google Scholar]
  23. Skerratt J. H., Nichols P. D., Mancuso C. A., James S. R., Dobson S. J., McMeekin T. A., Burton H. 1991; The phospholipid ester-linked fatty acid composition of members of the family Halomonadaceae and genus Flavobacterium. A chemo-taxonomic guide. Syst. Appl. Microbiol. 14:8–13
    [Google Scholar]
  24. Stackebrandt E., Murray R. G. E., Triiper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.”. Int. J. Syst. Bacteriol. 38:321–325
    [Google Scholar]
  25. Swofford D. L. 1990 PAUP: phylogenetic analysis using parsimony, version 3.0 Illinois Natural History Survey; Champaign:
    [Google Scholar]
  26. Valderrama M. J., Quesada E., Bejar V., Ventosa A., Gultierrez M. C., Ruiz-Berraquero F., Ramos-Cormenzana A. 1991; Deleya salina sp. nov., a moderately halophilic gram- negative bacterium. Int. J. Syst. Bacteriol. 41:377–384
    [Google Scholar]
  27. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int. J. Syst. Bacteriol. 30:485–495
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichesky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Triiper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  29. Weisburg W. G., Oyaizu Y., Oyaizu H., Woese C. R. 1985; Natural relationship between bacteroides and flavobacteria. J. Bacteriol. 164:230–236
    [Google Scholar]
  30. Wilkinson S. G. 1988; Fatty acid composition in members of the Pseudomonadaceae. p. 334–337 In Ratledge C., Wilkinson S. G. (ed.) Microbial lipids vol. 1 Academic Press, Inc.; London:
    [Google Scholar]
  31. Woese C. R., Weisburg W. G., Hahn C. M., Paster B. J., Zablen L. B., Lewis B. J., Macke T. J., Ludwig W., Stackebrandt E. 1985; The phylogeny of purple bacteria: the gamma subdivision. Syst. Appl. Microbiol. 6:25–33
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-43-4-665
Loading
/content/journal/ijsem/10.1099/00207713-43-4-665
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error