1887

Abstract

Abstract

Alkaliphilic, moderately thermophilic anaerobic bacteria able to grow above pH 10.5 and 55°C were isolated from various sewage plants in the United States. The strains were motile with two to six peritrichous flagella and formed round to slightly oval terminal spores in terminally distended and slightly enlarged cells. Sporulated cells remained motile. The pH range for growth was between 7.0 and 11.1, with an optimum of around 10.1. At pH 10.1 the temperature range for growth was between 30 and 63°C, with an optimum of 56°C. The shortest observed doubling time (glucose) was around 16 min at 56°C and pH 10.1. No dissimilatory sulfate reduction was detected. The organism utilized glucose, fructose, sucrose, maltose, and pyruvate but required yeast extract or tryptone for growth. Optimal NaCl concentrations for growth were between 50 and 200 mM. The guanine-plus-cytosine content was 30.0 ± 0.10 mol%. On the basis of unique properties and 16S rRNA analysis, the strains are placed in a new species, , referring to the unusual retainment of motility by sporulated cells. Strain JW-YL-7 (DSM 7308) is designated as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-43-3-450
1993-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/43/3/ijs-43-3-450.html?itemId=/content/journal/ijsem/10.1099/00207713-43-3-450&mimeType=html&fmt=ahah

References

  1. Aragno M., Walther-Mauruschat A., Mayer F., Schlegel H. G. 1977; Micromorphology of Gram-negative hydrogen bacteria. I. Cell morphology and flagellation. Arch. Microbiol. 114:93–100
    [Google Scholar]
  2. Ausubel F. M. 19892.4.1–2.4.5 Current protocols in molecular biology Wiley Interscience; New York:
    [Google Scholar]
  3. Beuscher N., Mayer F., Gottschalk G. 1974; Citrate lyase from Rhodopseudomonas gelatinosa: purification, electron microscopy and subunit structure. Arch. Microbiol. 100:307–328
    [Google Scholar]
  4. Biggin M. D., Gibson T. J., Hing G. F. 1983; Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc. Natl. Acad. Sci. USA 80:3963–3965
    [Google Scholar]
  5. Blotevogel K., Fischer U., Mocha M., Jannsen S. 1985; Methanobacterium thermoalcaliphilum spec, nov., a new moderately alkaliphilic and thermophilic autotrophic methanogen. Arch. Microbiol. 142:211–217
    [Google Scholar]
  6. Boone D. R., Worakit S., Mathrani I. M., Mah R. A. 1986; Alkaliphilic methanogens from high-pH lake sediments. System. Appl. Microbiol. 7:230–234
    [Google Scholar]
  7. De Soete G. 1983; A least square algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  8. Frasca J. M., Parks V. R. 1965; A routine technique for double-staining ultrathin sections using uranyl and lead salts. J. Cell Biol. 25:157–161
    [Google Scholar]
  9. Freier D., Mothershed C. P., Wiegel J. 1988; Characterization of Clostridium thermocellum JW-20 Appl. Environ. Microbiol. 54:204–211
    [Google Scholar]
  10. Grant W. D., Mwatha W. E., Jmes B. E. 1990; Alkaliphiles: ecology, diversity and applications. FEMS Microbiol. Rev. 75:255–270
    [Google Scholar]
  11. Horikoshi K. 1990 Microorganisms in alkaline environments Kodansha; Tokyo:
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. 21–132 Munro H. N. Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  13. Kellenberger E., Ryter A., Sechaud J. 1958; Electron microscope study of DNA-containing plasma. II. Vegetative and mature phage DNA as compared with normal bacterial nucleosides in different physiological states. J. Biophys. Biochem. Cytol. 4:671–678
    [Google Scholar]
  14. Khraptsova G. I., Tsaplina I. A., Seregina L. M., Loginova L. G. 1984; Thermophilic bacteria of the hot springs of Buryatia. Mikrobiologiya 53:137–141
    [Google Scholar]
  15. Kroll R. G. 1990; Alkalophiles. 55–92 Edwards C. Microbiology of extreme environments McGraw-Hill; New York:
    [Google Scholar]
  16. Krulwich T. A., Guffanti A. A. 1989; Alkalophilic bacteria. Annu. Rev. Microbiol. 43:435–463
    [Google Scholar]
  17. Lane D. J., Pace B., Olsen G. J., Stahl D. A. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  18. Liu Y., Boone D. R., Choy C. 1990; Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int. J. Syst. Bacteriol. 40:111–116
    [Google Scholar]
  19. Ljungdahl L. G., Wiegel J. 1987; Anaerobic fermentations. 84–96 Demain A. L., Solomon N. A. Manual of industrial microbiology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  20. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  21. Mathrani I. M., Boone D. R., Mah R. A., Fox G. E., Lau P. P. 1988; Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int. J. Syst. Bacteriol. 38:139–142
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  23. Niimura Y., Koh E., Yanagida F., Suzuki K.-I., Komagata K., Kozaki M. 1990; Amphibacillus xylanus gen. nov., sp. nov., a facultatively anaerobic sporeforming xylan-digesting bacterium which lacks cytochrome, quinone, and catalase. Int. J. Syst. Bacteriol. 40:297–301
    [Google Scholar]
  24. Olsen G. J., Overbeek R., Larsen N., Marsh T. L., McCaughey M. J., Maciukenas M. A., Kuan W. M., Macke T. J., Woese R. 1992; The ribosomal database project. Nucleic Acids Res. 20:Suppl.2199–2200
    [Google Scholar]
  25. Sanger F., Niclden S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467
    [Google Scholar]
  26. Sharp R. J., Munster M. J. 1986; Biotechnological implications for microorganisms from extreme environments. 215–295 Herbert R. A., Codd G. A. Microbes in extreme environments Academic Press; London:
    [Google Scholar]
  27. Shiba H., Yamamoto H., Horikoshi K. 1989; Isolation of strictly anaerobic halophiles from the aerobic surface sediments of hypersaline environments in California and Nevada. FEMS Microbiol. Lett. 57:191–196
    [Google Scholar]
  28. Souza K. A., Deal P. H., Mack H. M., Turnbill C. E. 1974; Growth and reproduction of microorganisms under extremely alkaline conditions. Appl. Microbiol. 28:1066–1068
    [Google Scholar]
  29. Spurr A. R. 1969; A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26:31–43
    [Google Scholar]
  30. Valentine R. C., Shapiro B. M., Stadtman E. R. 1968; Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from E. coli. Biochemistry 7:2143–2152
    [Google Scholar]
  31. Weisburg W. G., Tully J. G., Rose D. L., Petzel J. P., Oyaizu H., Yang D., Mandelco L., Sechrest J., Lawrence T. G., van Etten J., Maniloff J., Woese C. R. 1989; A phylogenetic analysis of the Mycoplasmas: Basis for their classification. J. Bacteriol. 171:6455–6467
    [Google Scholar]
  32. Whitman W. B., Sohn S., Caras D. S., Premachandran U. 1986; Isolation and characterization of 22 mesophilic methanococci. Syst. Appl. Microbiol. 7:235–240
    [Google Scholar]
  33. Wiegel J. 1981; Distinction between the Gram reaction and the Gram type of bacteria. Int. J. Syst. Bacteriol. 31:88
    [Google Scholar]
  34. Wiegel J., Ljungdahl L. G., Rawson J. R. 1979; Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J. Bacteriol. 139:800–810
    [Google Scholar]
  35. Wiegel J., Quandt L. 1982; Determination of the Gram type using the reaction between polymyxin B and lipopolysaccharides of the outer cell wall of whole bacteria. J. Gen. Microbiol. 128:2261–2270
    [Google Scholar]
  36. Woese C. R., Gutell R., Gupta R., Noller H. F. 1983; Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev. 47:621–669
    [Google Scholar]
  37. Woese C. R., Sogin M., Stahl D. A., Lewis B. J., Bonen L. 1976; A comparison of the 16S ribosomal RNAs from mesophilic and thermophilic bacilli. J. Mol. Evol. 7:197–213
    [Google Scholar]
  38. Worakit S., Boone D. R., Mah R. A., Abdel-Samie M., EI-Halwagi M. M. 1986; Methanobacterium alcaliphilum sp. nov., an H2-utilizing methanogen that grows at high pH values. Int. J. Syst. Bacteriol. 36:380–382
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-43-3-450
Loading
/content/journal/ijsem/10.1099/00207713-43-3-450
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error