1887

Abstract

Abstract

Six strains of coccoid, halophilic methanogens were isolated from various salinaria and natural hypersaline environments. These isolates (strains FDF-1 [T = type strain], FDF-2, SF-2, Ret-1, SD-1, and Cas-1) grew on media containing methanol and mono-, di-, and trimethylamines as catabolic substrates, but not on media containing dimethyl sulfide, methane thiol, H, formate, or acetate; when cells were provided with H in addition to methanol or trimethylamine, they grew on the medium containing a methyl substrate but did not catabolize H. All of the strains were capable of growth in mineral medium to which trimethylamine was added as a catabolic substrate, although some strains were greatly stimulated by biotin or p-aminobenzoate. DNA reassociation and denaturing electrophoresis of whole-cell proteins indicated that strains FDF-1, FDF-2, SF-2, and Ret-1, together with previously described strains SF-1, Z-7302, Z-7401, Z-7404, and Z-7405, belong to a new taxon named sp. nov; FDF-1 (= OCM 59) is the type strain. These strains grew fastest at temperatures near 40°C and, in medium containing 0.5 to 2.5 M NaCl, at pH values near 7. The two new strains excluded from the species on the basis of the results of phylogenetic tests, strains Cas-1 and SD-1, also differed from in some minor physiological characteristics. Strain Cas-1 was less halophilic (fastest growth occurred in the presence of 0.5 to 1 M NaCl), and strain SD-1 was slightly alkaliphilic (fastest growth occurred at pH 7.8). The DNA reassociation study also showed that SLP exhibited 52% sequence similarity with Z-7982, supporting the classification of these organisms as separate but closely related species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-43-3-430
1993-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/43/3/ijs-43-3-430.html?itemId=/content/journal/ijsem/10.1099/00207713-43-3-430&mimeType=html&fmt=ahah

References

  1. Baresi L., Mah R. A., Ward D. M., Kaplan I. R. 1978; Methanogenesis from acetate: enrichment studies. Appl. Environ. Microbiol. 36:186–197
    [Google Scholar]
  2. Blotevogel K.-H., Fischer U., Lüpkes K. H. 1986; Methanococcus frisius sp. nov., a new methylotrophic marine methanogen. Can. J. Microbiol. 32:127–131
    [Google Scholar]
  3. Boone D. R., Johnson R. L., Liu Y. 1989; Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implication in the measurement of Km for H2 or formate uptake. Appl. Environ. Microbiol. 55:1735–1741
    [Google Scholar]
  4. Boone D. R., Whitman W. B. 1988; Minimal standards for describing new taxa within the genera of methanogenic bacteria. Int. J. Syst. Bacteriol. 38:212–219
    [Google Scholar]
  5. Boone D. R., Whitman W. B., Rouvière P. Diversity and taxonomy of methanogens. Ferry J. G. Methanogenesis, in press Chapman & Hall; New York:
    [Google Scholar]
  6. Ferguson T. J., Mah R. A. 1983; Isolation and characterization of an H2-oxidizing thermophilic methanogen. Appl. Environ. Microbiol. 45:265–274
    [Google Scholar]
  7. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol. 38:117–132
    [Google Scholar]
  8. Johnson J. L. 1985; DNA reassociation and RNA hybridisation of bacterial nucleic acids. Methods Microbiol. 18:33–74
    [Google Scholar]
  9. Kiene R. P., Oremland R. S., Catena A., Miller L. G., Capone D. G. 1986; Metabolism of reduced methylated sulfur compounds in anaerobic sediments by a pure culture of an estuarine methanogen. Appl. Environ. Microbiol. 52:1037–1045
    [Google Scholar]
  10. König H., Stetter K. O. 1982; Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 3:478–490
    [Google Scholar]
  11. Liu Y., Boone D. R., Choy C. 1990; Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int. J. Syst. Bacteriol. 40:111–116
    [Google Scholar]
  12. Maestrojuan G. M., Boone D. R. 1991; Characterization of Methanosarcina barken MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T. Int. J. Syst. Bacteriol. 41:267–274
    [Google Scholar]
  13. Maestrojuán G. M., Boone J. E., Mah R. A., Menaia J. A. G. F., Sachs M. S., Boone D. R. 1992; Taxonomy and halotolerance of mesophilic Methanosarcina strains, assignment of strains to species, and synonymy of Methanosarcina mazei and Methanosarcina frisia. Int. J. Syst. Bacteriol. 42:561–567
    [Google Scholar]
  14. Mah R. A., Boone D. R. 1988; Methanosarcina. 2199–2205 Staley J. T., Pfennig N., Murray R. G. E., Holt J. G. Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  15. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  16. Mathrani I. M. 1989 Ph.D. thesis University of California; Los Angeles:
    [Google Scholar]
  17. Mathrani I. M., Boone D. R. 1985; Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Appl. Environ. Microbiol. 50:140–143
    [Google Scholar]
  18. Mathrani I. M., Boone D. R., Mah R. A. 1985; Isolation and characterization of a halophilic methanogen from a solar saltern. Abstr. 85th Annu. Meet. Am. Soc. Microbiol. 1985:160
    [Google Scholar]
  19. Mathrani I. M., Boone D. R., Mah R. A. 1988; Isolation and characterization of four halophilic methanogens and DNA/DNA homology studies of 12 halophilic methanogens. 1-23. Abstr. 88th Annu. Meet. Am. Soc. Microbiol. 1988:184
    [Google Scholar]
  20. Miller T. L., Wolin M. J. 1985; Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141:116–122
    [Google Scholar]
  21. Oremland R. S., Kiene R. P., Mathrani I. M., Whiticar M. J., Boone D. R. 1989; Description of an estuarine methylotrophic methanogen which grows on dimethyl sulfide. Appl. Environ. Microbiol. 55:994–1002
    [Google Scholar]
  22. Paterek J. R., Smith P. H. 1985; Isolation and characterization of a halophilic methanogen from Great Salt Lake. Appl. Environ. Microbiol. 50:877–881
    [Google Scholar]
  23. Paterek J. R., Smith P. H. 1988; Methanohalophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen. Int. J. Syst. Bacteriol. 38:122–123
    [Google Scholar]
  24. Powell G. E. 1983; Interpreting gas kinetics of batch culture. Biotechnol. Lett. 5:437–440
    [Google Scholar]
  25. Preston J. F., Boone D. R. 1973; Analytical determination of the buoyant density of DNA in acrylamide gels after preparative CsCl gradient centrifugation. FEBS Lett. 37:321–324
    [Google Scholar]
  26. Rouviere P., Mandelco L., Winker S., Woese C. R. 1992; A detailed phylogeny for the Methanomicrobiales. Syst. Appl. Microbiol. 15:363–371
    [Google Scholar]
  27. Schildkraut C. L., Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol. 4:430–433
    [Google Scholar]
  28. Sowers K. R., Baron S. F., Ferry J. G. 1984; Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl. Environ. Microbiol. 47:971–978
    [Google Scholar]
  29. Sowers K. R., Ferry J. G. 1983; Isolation and characterization of a methylotrophic marine methanogen, Methanococcoides methylutens gen. nov., sp. nov. Appl. Environ. Microbiol. 45:684–690
    [Google Scholar]
  30. Sowers K. R., Johnson J. L., Ferry J. G. 1984; Phylogenetic relationships among the methylotrophic methane-producing bacteria and emendation of the family Methanosarcinaceae. Int. J. Syst. Bacteriol. 34:444–450
    [Google Scholar]
  31. Wilharm T., Zhilina T. N., Hummel P. 1991; DNA-DNA hybridization of methylotrophic halophilic methanogenic bacteria and transfer of Methanococcus halophilusVP to the genus Methanohalophilus as Methanohalophilus halophilus comb, nov. Int. J. Syst. Bacteriol. 41:558–562
    [Google Scholar]
  32. Xun L., Boone D. R., Mah R. A. 1989; Deoxyribonucleic acid hybridization study of Methanogenium and Methanocorpusculum species, emendation of the genus Methanocorpusculum, and transfer of Methanogenium aggregans to the genus Methanocorpusculum as Methanocorpusculum aggregans comb. nov. Int. J. Syst. Bacteriol. 39:109–111
    [Google Scholar]
  33. Yu I. K., Kawamura F. 1987; Halomethanococcus doii gen. nov., sp. nov: an obligately halophilic methanogenic bacterium from solar salt ponds. J. Gen. Appl. Microbiol. 33:303–309
    [Google Scholar]
  34. Zhilina T. N. 1983; A new obligate halophilic methane-producing bacterium. Mikrobiologiya 52:375–382
    [Google Scholar]
  35. Zhilina T. N. 1986; Methanogenic bacteria from hypersaline environments. Syst. Appl. Microbiol. 7:216–222
    [Google Scholar]
  36. Zhilina T. N., Zavarzin G. A. 1987; Methanohalobium evestigatus, n. gen., n. sp. The extremely halophylic methanogenic Archaebacterium. Dokl. Akad. Nauk SSSR 293:464–468
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-43-3-430
Loading
/content/journal/ijsem/10.1099/00207713-43-3-430
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error