Transfer of to Free

Abstract

Abstract

Comparative sequence analysis of in vitro-amplified 16S rRNA genes of GB17 (T = type strain) and LMG 4218 revealed identical 16S rRNA primary structures for the two organisms. The level of overall DNA similarity of GB17 and P. DSM 65 is 85%, as determined by quantitative DNA-DNA hybridization. Therefore, we propose the transfer of to The closest relative of and is as revealed by comparative 16S rRNA sequence analysis. These organisms are members of the alpha subclass of the Within this subclass, , and form a phylogenetic group with and .”

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-43-2-363
1993-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/43/2/ijs-43-2-363.html?itemId=/content/journal/ijsem/10.1099/00207713-43-2-363&mimeType=html&fmt=ahah

References

  1. Amann R., Springer N., Ludwig W., Görtz H. D., Schleifer K. H. 1991; Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature (London) 351:161–164
    [Google Scholar]
  2. Aragno M., Schlegel H. G. 1991; The mesophilic hydrogen-oxidizing (knallgas) bacteria. 344–384 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. The prokaryotes 1 Springer; New York:
    [Google Scholar]
  3. Beijerinck M., Minkman D. C. J. 1910; Bildung und Verbrauch von Stickoxydul durch Bakterien. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Abt. 2 25:30–63
    [Google Scholar]
  4. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1981; Gene organization and primary structure of a ribosomal RNA Operon from Escherichia coli. J. Mol. Biol. 148:107–127
    [Google Scholar]
  5. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem. 81:461–466
    [Google Scholar]
  6. Chandra T. S., Friedrich C. G. 1986; Tn5-induced mutations in sulfur-oxidizing ability (Sox) of Thiosphaera pantotropha. J. Bacteriol. 166:446–452
    [Google Scholar]
  7. Cox R. B., Quayle J. R. 1975; The autotrophic growth of Micrococcus denitrificans on methanol. Biochem. J. 150:569–571
    [Google Scholar]
  8. DeLey J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  9. Dryden S. C., Kaplan S. 1990; Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides. Nucleic Acids Res. 18:7267–7277
    [Google Scholar]
  10. Egert M., Hamann A., Körnen R., Friedrich C. G. Methanol and methylamine utilization result from mutational events in Thiosphaera pantotropha Arch. Microbiol., in press
    [Google Scholar]
  11. Felsenstein J. 1982; Numerical methods for inferring evolutionary trees. Q. Rev. Biol. 57:379–404
    [Google Scholar]
  12. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees. A method based on mutation distances as estimated by cytochrome c sequences is of general applicability. Science 155:279–284
    [Google Scholar]
  13. Friedrich C., Mitrenga G. 1981; Oxidation of thiosulfate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol. Lett. 10:209–212
    [Google Scholar]
  14. Huss V., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4:184–192
    [Google Scholar]
  15. Gerstenberg C., Friedrich B., Schlegel H. G. 1982; Physical evidence for plasmids in autotrophic, especially hydrogen-oxidizing, bacteria. Arch. Microbiol. 133:90–96
    [Google Scholar]
  16. Jahnke K. D. 1992; BASIC computer program for evaluating spectroscopic DNA renaturation data from Gilford system 2600 spectrophotometer on a PC/XT/AT type personal computer. J. Microbiol. Methods 15:61–73
    [Google Scholar]
  17. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. 21–132 Munro H. N. Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  18. Kluyver A. J., Verhoeven W. 1954; Studies on true dissimilatory nitrate reduction. IV. On adaptation in Micrococcus denitrificans. Antonie van Leeuwenhoek. J. Microbiol. Serol. 20:337–358
    [Google Scholar]
  19. Kuenen J. G., Robertson L. R. 1989; Genus Thiosphaera Robertson and Kuenen 1984a, 91. 1861–1862 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Bergey’s manual of systematic bacteriology 3 Williams and Wilkins; Baltimore:
    [Google Scholar]
  20. Kuenen J. G., Robertson L. R., Touvinen O. H. 1991; The genera Thiobacillus, Thiomicrospira, and Thiosphaera. 2638–2657 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. The prokaryotes Springer; New York:
    [Google Scholar]
  21. Lane D. J., Harrison A. P. Jr., Stahl D., Pace B., Giovannoni S. J., Olsen G. J., Pace N. R. 1992; Evolution of sulfur- and iron-oxidizing eubacteria. J. Bacteriol. 174:269–278
    [Google Scholar]
  22. Marmur J. 1961; A procedure for the isolation of DNA from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  23. Mittenhuber G., Sonomoto K., Egert M., Friedrich C. G. 1991; Identification of the DNA region responsible for sulfur-oxidizing ability of Thiosphaera pantotropha. J. Bacteriol. 173:7340–7344
    [Google Scholar]
  24. Nokhal T. H., Schlegel H. G. 1983; Taxonomic study of Paracoccus denitrificans. Int. J. Syst. Bacteriol. 33:26–37
    [Google Scholar]
  25. Olsen G. J., Larsen N., Woese C. R. 1991; The ribosomal RNA database project. Nucleic Acids Res. 19:2017–2021
    [Google Scholar]
  26. Pettigrew G. W. 1991; The cytochrome c peroxidase of Paracoccus denitrificans. Biochim. Biophys. Acta 1058:25–27
    [Google Scholar]
  27. Ras J., Reijnders W. N. M., Spanning R. J. M., van Harms N., Oltmann L. F., Stouthamer A. H. 1991; Isolation, sequencing, and mutagenesis of the gene encoding cytochrome c553i of Paracoccus denitrificans and characterization of the mutant strain. J. Bacteriol. 173:6971–6979
    [Google Scholar]
  28. Robertson L. A., Kuenen J. G. 1983; Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium. J. Gen. Microbiol. 129:2847–2855
    [Google Scholar]
  29. Robertson L. A., Kuenen J. G. 1990; Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria. Antonie van Leeuwenhoek. J. Microbiol. 57:139–152
    [Google Scholar]
  30. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Ehrlich H. A. 1988; Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 293:487–491
    [Google Scholar]
  31. Saitou N., Nei M. 1987; The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  32. Sambrook J., Maniatis T., Fritsch E. F. 1989 Molecular cloning: a laboratory manual, 2nd ed.c. Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y.:
    [Google Scholar]
  33. Schleifer K. H., Schüler D., Spring S., Weizenegger M., Amann R., Ludwig W., Köhler M. 1991; The genus Magnetospirillum gen. nov. Description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov.. Syst. Appl. Microbiol. 14:379–385
    [Google Scholar]
  34. Schleifer K. H., Stackebrandt E. 1983; Molecular systematics of prokaryotes. Annu. Rev. Microbiol. 37:143–187
    [Google Scholar]
  35. Schlesner H., Bartels C., Sitting M., Dorsch M., Stackebrandt E. 1990; Taxonomic and phylogenetic studies on a new taxon of budding, hyphal proteobacteria, Hirschia baltica gen. nov., sp. nov. Int.. J. Syst. Bacteriol. 40:443–451
    [Google Scholar]
  36. Stackebrandt E., Murray R. G. E., Trüper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.”. Int. J. Syst. Bacteriol. 38:321–325
    [Google Scholar]
  37. Stouthammer A. H. 1992; Metabolic pathways in Paracoccus denitrificans and closely related bacteria in relation to the phylogeny of prokaryotes. Antonie van Leeuwenhoek J. Microbiol. 61:1–33
    [Google Scholar]
  38. Verseveld H. W., Stouthammer A. H. 1991; The genus Paracoccus. 2321–2324 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H. The prokaryotes 3 Springer; New York:
    [Google Scholar]
  39. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandier O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Trüper H. G. 1987; Report of the Ad Hoc Committee on Reconcilation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  40. Weisburg W. G., Dobson M. E., Samuel J. E., Dasch G. A., Mallavia L. P., Baco O., Mandelco L., Sechrest J. E., Weiss E., Woese C. R. 1989; Phylogenetic diversity of the rickettsiae. J. Bacteriol. 171:4202–4206
    [Google Scholar]
  41. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  42. Yang D., Oyaizu Y., Oyaizu H., Olsen G. E., Woese C. R. 1985; Mitochondrial origins. Proc. Natl. Acad. Sci. USA 82:4443–4447
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-43-2-363
Loading
/content/journal/ijsem/10.1099/00207713-43-2-363
Loading

Data & Media loading...

Most cited Most Cited RSS feed