1887

Abstract

After enrichment from Chinese rural anaerobic digestor sludge, anaerobic, sporing and nonsporing, saturated fatty acid-ß-oxidizing syntrophic bacteria were isolated as cocultures with H- and formate-utilizing or sp. strain G-11. The syntrophs degraded C to C saturated fatty acids, including isobutyrate and 2-methylbutyrate. They were adapted to grow on crotonate and were isolated as pure cultures. The crotonate-grown pure cultures alone did not grow on butyrate in either the presence or the absence of some common electron acceptors. However, when they were reconstituted with , growth on butyrate again occurred. In contrast, crotonate-grown and , as well as , failed to grow on butyrate when these organisms were cocultured with . The crotonate-grown pure subcultures of the syntrophs described above were subjected to 16S rRNA sequence analysis. Several previously documented fatty acid-ß-oxidizing syntrophs grown in pure cultures with crotonate were also subjected to comparative sequence analyses. The sequence analyses revealed that the new sporing and nonsporing isolates and other syntrophs that we sequenced, which had either gram-negative or gram-positive cell wall ultrastructure, all belonged to the phylogenetically gram-positive phylum. They were not closely related to any of the previously known subdivisions in the gram-positive phylum with which they were compared, but were closely related to each other, forming a new subdivision in the phylum. We recommend that this group be designated fam. nov.; a description is given.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-43-2-278
1993-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/43/2/ijs-43-2-278.html?itemId=/content/journal/ijsem/10.1099/00207713-43-2-278&mimeType=html&fmt=ahah

References

  1. Amos D. A., Mclnerney M. J. 1990; Growth of Syntrophomonas wolfei on unsaturated short chain fatty acids. Arch. Microbiol. 154:31–36
    [Google Scholar]
  2. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminatium in a pressurized atmosphere. Appl. Environ. Microbiol. 32:781–791
    [Google Scholar]
  3. Balch W. E., Wolfe R. S. 1979; Specificity and distribution of coenzyme M (2-mercaptoethanesulfonic acid). J. Bacteriol. 137:256–263
    [Google Scholar]
  4. Basgall E. J., Scherba G., Gelberg H. B. 1988 Diagnostic virology in veterinary pathology: techniques for negative staining. 366–367 In Bailey G. W. (ed.) Proceedings of the 46th Annual Meeting of the Electron Microscopy Society of AmericaSan Francisco Press, Inc.San Francisco
    [Google Scholar]
  5. Beaty P. S., Mclnerney M. J. 1987; Growth of Syntrophomonas wolfei in pure culture on crotonate. Arch. Microbiol. 147:389–393
    [Google Scholar]
  6. Beaty P. S., Mclnerney M. J. 1990; Nutritional features of Syntrophomonas wolfei. Appl. Environ. Microbiol. 56:3223–3224
    [Google Scholar]
  7. Breznak J. A., Switzer J. M., Scitz H. J. 1988; Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch. Microbiol. 150:282–288
    [Google Scholar]
  8. Bryant M. P. 1972; Commentary on the Hungate technique for culture of anaerobic bacteria. Am. J. Clin. Nutr. 25:1324–1328
    [Google Scholar]
  9. Bryant M. P., Burkey L. A. 1953; Culture methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen. J. Dairy Sci. 36:205–217
    [Google Scholar]
  10. Canale A., Valente M. E., Ciotti A. 1984; Determination of volatile carboxylic acids (C1-C51) and lactic acid in aqueous acid extracts of silage by high performance liquid chromatography. J. Sci. Food Agric. 35:1178–1182
    [Google Scholar]
  11. Cato E. P., George W. L., Finegold S. M. 1986; Endospore-forming Gram-positive rods and cocci. Genus Clostridium. 1141–1200 In Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol. 2 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  12. De Soete G. 1973; A least-squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  13. Henson J. M., Smith P. H. 1985; Isolation of a butyrate-utilizing bacterium in coculture with Methanobacterium thermoautotrophicum from a thermophilic digester. Appl. Environ. Microbiol. 49:1461–1466
    [Google Scholar]
  14. Hungate R. E. 1950; The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev. 14:1–41
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. 21–132 In Munro H. N. (ed.) Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  16. Lane D. J., Pace N., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  17. Leedle J. A. Z., Hespell R. B. 1980; Differential carbohydrate media and anaerobic replica plating techniques in delineating carbohydrate-utilizing subgroups in rumen bacteria populations. Appl. Environ. Microbiol. 29:709–719
    [Google Scholar]
  18. Lorowitz W., Zhao H., Bryant M. P. 1989; Syntrophomonas wolfei subsp. saponavida subsp. nov., a long-chain fatty acid-degrading anaerobic, syntrophic bacterium; Syntrophomonas wolfei subsp. wolfei subsp. nov.; and emended description of the genus and species. Int. J. Syst. Bacteriol. 39:122–126
    [Google Scholar]
  19. Mclnerney M. J. Personal communication
    [Google Scholar]
  20. Mclnerney M. J., Bryant M. P., Hespell R. B., Costerton J. W. 1981; Syntrophomonas wolfei gen. nov., sp. nov., an anaerobic syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 41:1029–1039
    [Google Scholar]
  21. Mclnerney M. J., Bryant M. P., Pfennig N. 1979; Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch. Microbiol. 122:129–135
    [Google Scholar]
  22. Mclnerney M. J., Wofford N. Q. 1992; Enzymes involved in crotonate metabolism in Syntrophomonas wolfei. Arch. Microbiol. 158:344–349
    [Google Scholar]
  23. Miller L. A. 1982; Practical rapid embedding procedure for transmission electron microscopy. Lab. Med. 13:752–756
    [Google Scholar]
  24. Miller T. L., Wolin M. J. 1974; A serum bottle modification of the Hungate technique for cultivation of obligate anaerobes. Appl. Environ. Microbiol. 27:985–987
    [Google Scholar]
  25. Möller B., Obmer R., Howard B. H., Gottschalk G., Hippe H. 1984; Sporomusa, a new genus of Gram-negative anaerobic bacteria including Sporomusa sphaeroides sp. nov. and Sporomusa ovata sp. nov. Arch. Microbiol. 139:388–396
    [Google Scholar]
  26. Nisman B. 1954; The Stickland reaction. Bacteriol. Rev. 18:16–42
    [Google Scholar]
  27. Pfennig N., Wagener S. 1986; An improved method of preparing wet mounts for photomicrographs of microorganisms. J. Microbiol. Methods 4:303–306
    [Google Scholar]
  28. Roy R., Samin E., Dubourgier H. C., Albangnai G. 1986; Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch. Microbiol. 145:142–147
    [Google Scholar]
  29. Salanitro J. P., Muirhead P. A. 1975; Quantitative method for gas chromatographic analysis of short-chain monocarboxylic and dicarboxylic acids in fermentation media. Appl. Environ. Microbiol. 29:374–381
    [Google Scholar]
  30. Sanger T., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467
    [Google Scholar]
  31. Shelton D. R., Tiedje J. M. 1984; Isolation and partial characterization of bacteria in an anerobic consortium that mineralizes 3-chlorobenzoic acid. Appl. Environ. Microbiol. 48:840–848
    [Google Scholar]
  32. Smith R. L., Klug M. J. 1981; Electron donors utilized by sulfate-reducing bacteria in eutrophic lake sediments. Appl. Environ. Microbiol. 42:116–121
    [Google Scholar]
  33. Stackebrandt E., Pohla H., Kroppenstedt R., Hippe H., Woese C. W. 1985; 16S rRNA analysis of Sporomusa, Selenomonas, and Megasphaera: on the phylogenetic origin of gram-positive eubacteria. Arch. Microbiol. 143:270–276
    [Google Scholar]
  34. Stieb M., Schink B. 1985; Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Arch. Microbiol. 140:387–390
    [Google Scholar]
  35. Stieb M., Schink B. 1986; Anaerobic degradation of isovalerate by a defined methanogenic coculture. Arch. Microbiol. 144:291–295
    [Google Scholar]
  36. Thauer R. K., Jungermann K., Henninger H., Wenning J., Decker K. 1968; The energy metabolism of Clostridium kluyveri. Eur. J. Biochem. 4:173–180
    [Google Scholar]
  37. Tiedje J. M. Personal communication
    [Google Scholar]
  38. Tomei F. A. Personal communication
    [Google Scholar]
  39. Tomei F. A., Maki J. S., Mitchell R. 1985; Interaction in syntrophic associations of endospore-forming, butyrate-degrading bacteria and H2-consuming bacteria. Appl. Environ. Microbiol. 50:1244–1250
    [Google Scholar]
  40. Widdel F. 1988; Microbial ecology of sulfate- and sulfur-reducing bacteria. 469–585 In Zender A. J. B. (ed.) Biology of anaerobic microorganisms John Wiley and Sons; New York:
    [Google Scholar]
  41. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  42. Woese C. R., Gutell R., Gupta R., Noller H. F. 1983; Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acid. Microbiol. Rev. 47:621–669
    [Google Scholar]
  43. Yang D., Oyaizu Y., Oyaizu H., Olsen G. J., Woese C. R. 1985; Mitochondrial origins. Proc. Natl. Acad. Sci. USA 82:4443–4447
    [Google Scholar]
  44. Zhao H., Yang D., Woese C. R., Bryant M. P. 1989; Assignment of the syntrophic, fatty acid-degrading anerobe Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov. Int. J. Syst. Bacteriol. 40:40–44
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-43-2-278
Loading
/content/journal/ijsem/10.1099/00207713-43-2-278
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error