1887

Abstract

Eight strains, 11 strains, and 7 strains, as well as 9 phenotypically similar strains and LMG 5342, were compared by examining electropherograms prepared from their soluble proteins and were grouped into nine protein electrophoretic groups. The levels of DNA relatedness among these electrophoretic groups were determined spectrophotometrically from the renaturation rates at 74°C of the DNAs of 13 selected strains. The representatives from five protein electrophoretic groups, including LMG 2665 (T = type strain) and LMG 2667, exhibited 76 to 100% DNA binding to each other and constituted DNA hybridization group 2665. All strains (including LMG 2715) were electrophoretically very similar; representatives of this species exhibited 93 to 99% DNA binding to each other and constituted DNA hybridization subgroup 2715. The strains belonging to the remaining three protein electrophoretic groups exhibited 94 to 96% DNA binding to each other and formed DNA hybridization subgroup 2632. The latter two subgroups were 60 to 83% (average, 73%) interrelated and exhibited 30 to 39% DNA binding to group 2665. It is proposed that and should be united in a single species, which should be classified in the genus as (Serrano 1928) comb. nov.; its type strain is strain LMG 2665 (= NCPPB 1846). This species also includes DNA hybridization group VI of Brenner et al. (D. J. Brenner, G. R. Fanning, J. K. Leete Knutson, A. G. Steigerwalt, and M. I. Krichevsky, Int. J. Syst. Bacteriol. 34:45-55, 1984). The transfer of to the genus and the creation of two separate subspecies within (Smith 1898) comb. nov. are also proposed. subsp. (Smith 1898) comb. nov. (synonym, ) contains the strains belonging to subgroup 2715, and its type strain is strain LMG 2715 (= NCPPB 2295); and subsp. subsp. nov. contains the strains belonging to subgroup 2632, and its type strain is strain LMG 2632 (= NCPPB 2280). As determined by principal-component analysis of the cellular fatty acid compositions, subsp. , and subsp. are separated from each other mainly by differences in the relative contents of -9-hexadecenoic acid (C), cyclo-heptadecanoic acid (C), and straight-chain octodecenoic acids (C). subsp. can also be differentiated from and subsp. by its inability to produce indole, to utilize citrate, to grow on -aconitate, and to form acid from seven carbohydrates. subsp. can also be separated from by its inability to form acid from sorbitol and α-methyl--mannoside. Descriptions of and and its two subspecies are given, and the description of the genus is emended.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-43-1-162
1993-01-01
2023-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/43/1/ijs-43-1-162.html?itemId=/content/journal/ijsem/10.1099/00207713-43-1-162&mimeType=html&fmt=ahah

References

  1. Agrios G. N. 1978; Plant pathology. , 2nd ed. Academic Press; New York:
    [Google Scholar]
  2. Alcorn S. M., Orum T. V., Steigerwalt A. G., Foster J. M., Fogleman J. C., Brenner D. J. 1991; Taxonomy and pathogenicity of Erwinia cacticida sp. nov. Int. J. Syst. Bacteriol 41:197–212
    [Google Scholar]
  3. Ayers S. H., Rupp P., Johnson W. T. 1919; A study of the alkali forming bacteria in milk. U. S. Department of Agriculture bulletin 782 U.S. Department of Agriculture; Washington, D.C:
    [Google Scholar]
  4. Azad H. R., Kado C. I. 1980; Numerical and DNA:DNA reassociation analyses of Erwinia rubrifaciens and other members of the Enterobacteriaceae. J. Gen. Microbiol 120117–129
    [Google Scholar]
  5. Beji A., Mergaert J., Gavini F., Izard D., Kersters K., Leclerc H., De Ley J. 1988; ubjective synonymy of Erwinia herbicola, Erwinia milletiae, and Enterobacter agglomerans and redefinition of the taxon by genotypic and phenotypic data. Int. J. Syst. Bacteriol 38:77–88
    [Google Scholar]
  6. Brenner D. J. 1984; Family I. Enterobacteriaceae Rahn 1937. p. 408–420 In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  7. Brenner D. J., Fanning G. R., Leete Knutson J. K., Steigerwalt A. G., Krichevsky M. I. 1984; Attempts to classify herbicola group-Enterobacter agglomerans strains by deoxyribonucleic acid hybridization and phenotypic tests. Int. J. Syst. Bacteriol 34:45–55
    [Google Scholar]
  8. Brenner D. J., Fanning G. R., Steigerwalt A. G. 1974; Deoxyribonucleic acid relatedness among erwineae and other Enterobacteriaceae: the gall, wilt, and dry-necrosis organisms (genus Erwinia Winslow et al., sensu stricto). Int. J. Syst. Bacteriol 24:197–204
    [Google Scholar]
  9. De Ley J. 1968; DNA base composition of yellow Erwinia strains. Antonie van Leeuwenhoek J. Microbiol. Serol 34:257–262
    [Google Scholar]
  10. De Ley J. 1970; Reexamination of the association between melting point, buoyant density and chemical base composition of deoxyribonucleic acid. J. Bacteriol 101:738–754
    [Google Scholar]
  11. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem 12:133–142
    [Google Scholar]
  12. Dye D. W. 1968; A taxonomic study of the genus Erwinia. I. The ‘amylovora’ group. N. Z. J. Sci 11:590–607
    [Google Scholar]
  13. Dye D. W. 1969; A taxonomic study of the genus Erwinia. III. The ‘herbicola’ group. N. Z. J. Sci 12:223–236
    [Google Scholar]
  14. Dye D. W. 1981; A numerical taxonomic study of the genus Erwinia. N. Z. J. Agric. Res 24:223–231
    [Google Scholar]
  15. Ewing W. H., Davis B. R. 1970; Media and tests for differentiation of Enterobacteriaceae. Public Health Service, U. S. Department of Health, Education, and Welfare; Washington, D.C:
    [Google Scholar]
  16. Ewing W. H., Fife M. A. 1972; Enterobacter agglomerans (Beijerinck) comb. nov. (the herbicola-lathyri bacteria). Int. J. Syst. Bacteriol 22:4–11
    [Google Scholar]
  17. Gardner J. M., Kado C. I. 1972; Comparative base sequence homologies of the deoxyribonucleic acids of Erwinia species and other Enterobacteriaceae. Int. J. Syst. Bacteriol 22:201–209
    [Google Scholar]
  18. Gavini F., Lefebvre B., Leclerc H. 1983; Etude tax-onomique de souches appartenant ou apparentees au genre Erwinia groupe Herbicola et a l’espece Enterobacter agglomerans. Syst. Appl. Microbiol 4:2181–235
    [Google Scholar]
  19. Gavini F., Mergaert J., Beji A., Mielcarek C., Izard D., Kersters K., De Ley J. 1989; Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int. J. Syst. Bacteriol 39:3371–345
    [Google Scholar]
  20. Goto M., Matsumoto K. 1987; Erwinia carotovora subsp. wasabiae subsp. nov. isolated from diseased rhizomes and fibrous roots of Japanese horseradish (Eutrema wasabi Maxim.). Int. J. Syst. Bacteriol 37:130–135
    [Google Scholar]
  21. Graham D. C., Hodgkiss W. 1967; Identity of Gramnegative, yellow pigmented, fermentative bacteria isolated from plants and animals. J. Appl. Bacteriol 30:175–189
    [Google Scholar]
  22. Grimont P. A. D., Popofif M. Y. 1980; Use of principal component analysis in interpretation of deoxyribonucleic acid relatedness. Curr. Microbiol 4:337–342
    [Google Scholar]
  23. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr. Microbiol 4:325–330
    [Google Scholar]
  24. Hao M. V., Brenner D. J., Steigerwalt A. G., Kosako Y., Komagata K. 1990; Erwinia persicinus, a new species isolated from plants. Int. J. Syst. Bacteriol 40:379–383
    [Google Scholar]
  25. Holländer R. 1980; Charakterisierung von Erwinia-Stämmen inbesondere der Herbicola-Gruppe durch Chinone der Atmung-skette und Enzyme des Fumarat-Stoffwechsels. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 1:243–256
    [Google Scholar]
  26. Izard D., Mergaert J., Gavini F., Beji A., Kersters K., De Ley J., Leclerc H. 1985; Separation of Escherichia adecarboxylata from the “Erwinia herbicola-Enterobacter agglomerans” complex and from the other Enterobacteriaceae by nucleic acid and protein electrophoretic techniques. Ann. Inst. Pasteur Microbiol 1368:151–168
    [Google Scholar]
  27. Kageyama B., Nakae M., Yagi S., Sonoyama T. 1992; Pantoea punctata sp. nov.,Pantoea citrea sp. nov., and Pantoea terrea sp. nov. isolated from fruit and soil samples. Int. J. Syst. Bacteriol 42:203–210
    [Google Scholar]
  28. Le Minor L., Chippaux M., Pichinoty F., Coynault C., Piéchaud M. 1970; Méthodes simples permettant de rechercher la tétrathionate réductase en cultures liquides ou sur colonies isolées. Ann. Inst. Pasteur 119:733–737
    [Google Scholar]
  29. Lind E., Ursing J. 1986; Clinical strains of Enterobacter agglomerans (synonyms: Erwinia herbicola, Erwinia milletiae) identified by DNA-DNA hybridization. Acta Pathol. Microbiol. Immunol. Scand. Sect. B 94:205–213
    [Google Scholar]
  30. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  31. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  32. Mergaert J. 1989; A taxonomic study of the “Erwinia herbicola-Enterobacter agglomerans complex”. Acad. Analecta 51:1–23
    [Google Scholar]
  33. Mergaert J., Gavini F., Kersters K., Leclerc H., De Ley J. 1983; Phenotypic and protein electrophoretic similarities between strains of Enterobacter agglomerans, Erwinia herbicola, and Erwinia milletiae from clinical or plant origin. Curr. Microbiol 8:327–331
    [Google Scholar]
  34. Mergaert J., Verdonck L., Kersters K., Swings J., Boeufgras J. M., De Ley J. 1984; Numerical taxonomy of Erwinia species using API systems. J. Gen. Microbiol 130:1893–1910
    [Google Scholar]
  35. Murata N., Starr M. P. 1974; Intrageneric clustering and divergence of Erwinia strains from plants and man in the light of deoxyribonucleic acid segmental homology. Can. J. Microbiol 20:1545–1565
    [Google Scholar]
  36. Ørskov I. 1984; Genus V. Klebsiella Trevisan 1885, 105AL. p. 461–465 In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol 1 The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  37. Paton A. M. 1959; An improved method for preparing pectate gels. Nature (London) 183:1812–1813
    [Google Scholar]
  38. Pon D. S., Townsend C. E., Wessman G. E., Schmitt C. G., Kingsolver C. H. 1954; A Xanthomonas parasitic on uredia of cereal rust. Phytopathology 44:707–710
    [Google Scholar]
  39. Richard C. 1984; qGenus VI.Enterobacter Hormaeche and Edwards 1960, 72AL. p. 465–469 In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  40. Serrano F. B. 1928; Bacterial fruitlet brown-rot of pineapple in the Philippines. Philipp. J. Sci 36:271–305
    [Google Scholar]
  41. Sierra G. 1957; A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of contact between cells and fatty substances. Antonie van Leeuwenhoek 23:15–22
    [Google Scholar]
  42. Skerman V. B. D., McGowan V., Sneath P. H. A. (ed.) 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol 30:225–420
    [Google Scholar]
  43. Starr M. P., Mandel M. 1969; DNA base composition and taxonomy of phytopathogenic and other enterobacteria. J. Gen. Microbiol 56:113–123
    [Google Scholar]
  44. Tamura K., Sakazaki R., Kosako Y., Yoshizaki E. 19861; Leclercia adecarboxylata gen. nov., comb, nov., formerly known as Escherichia adecarboxylata. Curr. Microbiol 13:179–184
    [Google Scholar]
  45. Verdonck L., Mergaert J., Rijckaert C., Swings J., Kersters K., De Ley J. 1987; The genus Erwinia: a numerical analysis of phenotypic features. Int. J. Syst. Bacteriol 37:4–18
    [Google Scholar]
  46. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Triiper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol 37:463–464
    [Google Scholar]
  47. Young J. M., Dye D. W., Bradbury J. F., Panagopoulos C. G., Robbs C. F. 1978; A proposed nomenclature and classification for plant pathogenic bacteria. N. Z. J. Agric. Res 21:153–177
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-43-1-162
Loading
/content/journal/ijsem/10.1099/00207713-43-1-162
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error