1887

Abstract

(type strain, ACM 1762 [=ATCC 49108], an actively dextranolytic species that possesses both lateral and polar flagella, was compared with the strictly aerobic, rod-shaped, chitinolytic bacterium ACM 3522 (= CNCM I-804) (T = type strain), which has a similar flagellation pattern, by performing phenotypic characterization and DNA-DNA hybridization studies and by analyzing DNA base compositions and 16S rRNA sequences. Our results indicated that ACM 3522 was phenotypically and genotypically distinct from and other phenotypically analogous spp., , and other aerobic chitin degraders. The 16S rRNA sequences of strains ACM 1762 and ACM 3522 were found to be very similar (97%) to each other and indicated that these organisms are proteobacteria that belong to the β subclass. The strains were deeply branched in the β subclass and were distinct from other pseudomonads, including , and from . On the basis of phenotypic, genotypic, and phylogenetic evidence, it is proposed that and ACM 3522 represent two distinct species in a new genus called . Thus, the genus gen. nov. contains comb. nov. and sp. nov., which are strictly aerobic, rod-shaped, soil-dwelling bacteria that are active polysaccharide degraders.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-43-1-120
1993-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/43/1/ijs-43-1-120.html?itemId=/content/journal/ijsem/10.1099/00207713-43-1-120&mimeType=html&fmt=ahah

References

  1. Blackall L. L., Hayward A. C., Sly L. I. 1985; Cellulolytic and dextranolytic gram-negative bacteria: revival of the genus Cellvibrio. J. Appl. Bacteriol 59:81–97
    [Google Scholar]
  2. Bowman J. P., Hayward A. C., Sly L. I. 1988; Pseudomonas mixta sp. nov., a bacterium from soil with degradative activity on a variety of complex polysaccharides.. Syst. Appl. Microbiol 11:53–59
    [Google Scholar]
  3. Collins M. D., Jones D. 1981; Distribution of isoprenoid structural types in bacteria and their taxonomic implications. Microbiol. Rev 45:316–354
    [Google Scholar]
  4. Covacevich M. T, Richards G. N. 1978; Purification of intracellular dextranases and β-glucosidases from Pseudomonas UQM 733. Carbohydr. Res 64:169–180
    [Google Scholar]
  5. Covacevich M. T., Richards G. N. 1979; Modes of action of intracellular dextranase and three oligoglucanases from Pseudomonas UQM 733. Carbohydr. Res 70:283–293
    [Google Scholar]
  6. De Borde C. C., Clayton W. N., Herlocher M. L., Maassab H. F. 1986; Resolution of a common RNA sequencing ambiguity by terminal deoxynucleotidyl transferase. Anal. Bio- chem 157:275–282
    [Google Scholar]
  7. De Soete G. 1983; A least square algorithm for fitting additive trees to proximity data. Psychometrika. 48:621–626
    [Google Scholar]
  8. Dewhirst F. E., Paster B. J., Bright P. L. 1989; Chro-mobacterium, Eikenella, Kingella, Neisseria, Simonsiella, and Vitreoscilla species comprise a major branch of the beta group Proteobacteria by 16S ribosomal ribonucleic acid sequence comparison: transfer of Eikenella and Simonsiella to the family Neisseriaceae (emend.). Int. J. Syst. Bacteriol 39:258–266
    [Google Scholar]
  9. Hayward A. C. 1964; Characteristics of Pseudomonas solan- acearum. J. Appl. Bacteriol 27:265–277
    [Google Scholar]
  10. Huss V. A. R., Festl H, Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol 4:184–192
    [Google Scholar]
  11. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. p. 21–132 In Munro H. N. (ed.) Mammalian protein metabolism. Academic Press; New York:
    [Google Scholar]
  12. Karr D. E., Bibb W. F., Moss C. W. 1981; Isoprenoid quinones of the genus Legionella. J. Clin. Microbiol 15:1044–1048
    [Google Scholar]
  13. Lane D. J. 1991; 16S/23S rRNA sequencing. p. 115–176 In Stakebrandt E, Goodfellow M. (ed.) Nucleic acid techniques in bacterial systematics. John Wiley & Sons; New York:
    [Google Scholar]
  14. Monreal J., Reese E. T. 1969; The chitinase of Serratia marcescens. Can. J. Microbiol 15:689–696
    [Google Scholar]
  15. Palleroni N. J. 1984; Genus I. Pseudomonas Migula 1894. p. 141–219 In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol 1 The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  16. Richards G. N., Streamer M. 1972; Studies on dextranase.I. Isolation of extracellular bacterial dextranases. Carbohydr. Res 62:191–196
    [Google Scholar]
  17. Sly L. I., Blackall L. L., Kraat P. C., Tian-Shen T., Sangkhobol V. 1986; The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J. Microbiol. Methods 5:139–156
    [Google Scholar]
  18. Spiegel Y, Cohn E, Galper S, Sharon E., Chet I. 1991; Evaluation of a newly isolated bacterium, Pseudomonas chitinolytica sp. nov., for controlling the root-knot nematode Meloidogyne javanica. Biocontrol Sci. Technol 1:115–125
    [Google Scholar]
  19. Stackebrandt E, Charfreitag O. 1990; Partial 16S rRNA primary structure of five Actinomyces species: phylogenetic implications and development of an Actinomyces israelii - specific oligonucleotide probe. J. Gen. Microbiol 136:37–43
    [Google Scholar]
  20. Willems A., Busse J., Goor M., Pot B., Falsen E., Jantzen E., Hoste B., Gillis M., Kersters K., Auling G., De Ley J. 1989; Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (for-merly Pseudomonas pseudoflava and “Pseudomonas carboxy- doftava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int. J. Syst. Bacteriol 39:319–333
    [Google Scholar]
  21. Willems A., De Ley J., Gillis M., Kersters K. 1991; Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb, nov., for Alcaligenes paradoxus (Davis 1969). Int. J. Syst. Bacteriol 41:445–450
    [Google Scholar]
  22. Willems A., Falsen E., Pot B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., De Ley J. 1990; Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, EF group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. Int. J. Syst. Bacteriol 40:384–398
    [Google Scholar]
  23. Willems A., Gillis M., Kersters K., Van den Broecke L., De Ley J. 1987; Transfer of Xanthomonas ampelina Panagopoulos 1969 to a new genus, Xylophilus gen. nov., asXylophilus ampelinus (Panagopoulos 1969) comb. nov. Int. J. Syst. Bacteriol 37:422–430
    [Google Scholar]
  24. Willems A., Pot B., Falsen E., Vandamme P., Gillis M., Kersters K., De Ley J. 1991; Polyphasic taxonomic study of the emended genus Comamonas: relationship to Aquaspirillum aquaticum, E. Falsen group 10, and other clinical isolates. Int.J. Syst. Bacteriol 41:427–444
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-43-1-120
Loading
/content/journal/ijsem/10.1099/00207713-43-1-120
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error