sp. nov. and sp. nov., Bacteria That Decompose Algal Polysaccharides Free

Abstract

We studied seven strains of aerobic, marine, polarly flagellated bacteria which decompose alginate, agar, and carrageenan. The major respiratory quinone of these strains was ubiquinone-8. The G+C content of their DNA was 39.5 to 41.7 mol%. “” IAM 12927 and the conspecific five isolates were concluded to constitute a single species distinguished from the other nonpigmented species by DNA-DNA hybridization (homology values of more than 82%) and phenotypic similarity (similarity coefficients, based on assimilation of 145 carbon compounds, were 79 to 96%). “” IAM 12662, the sole extant strain, was distinct from “” and other species in DNA-DNA hybridization and phenotypic features. Taxonomic affinity to was indicated by DNA-DNA hybridization with “” IAM 12927 and the five conspecific isolates (39 to 55%) and with “” IAM 12662 (43 to 45%). Phenotypically, higher similarity values (79 to 89%) for assimilation of 145 carbon compounds were shared between IAM 12927 and the six conspecific strains, including “” IAM 12927. sp. nov. (type strain, IAM 12927, =ATCC 19262, =NCIMB 301) and (type strain, IAM 12662, =IFO 12985, =ATCC 43555, =NCIMB 302) are proposed for “” IAM 12927 and the conspecific five isolates and “” IAM 12662, respectively. A set of phenotypic features which differentiate the two species is described.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-42-4-621
1992-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/42/4/ijs-42-4-621.html?itemId=/content/journal/ijsem/10.1099/00207713-42-4-621&mimeType=html&fmt=ahah

References

  1. Akagawa M., Yamasato K. 1989; Synonymy of Alcaligenes aquamarinus, Alcaligenes faecalis subsp. homari, and Deleya aesta: Deleya aquamarina comb. nov. as the type species of the genus Deleya. Int. J. Syst. Bacteriol. 39:462–466
    [Google Scholar]
  2. Akagawa-Matsushita M., Itoh T., Katayama Y., Kuraishi H., Yamasato K. Isoprenoid quinone composition of some marine Alteromonas, Marinomonas, Deleya, Pseudomonas and Shewanella species. J. Gen. Microbiol. in press
    [Google Scholar]
  3. Akagawa-Matsushita M., Yamada Y., Yamasato K. 1991; Characterization and identification of a restriction enzyme producing marine bacterium Deleya marina IAM 14114. Bull. JFCC 7:28–32
    [Google Scholar]
  4. Ando Y., Inoue K. 1961; Decomposition of alginic acid by microorganisms. IV. On the Vibrio-type bacteria, newly isolated from the decaying Laminaria. Bull. Jpn. Soc. Sci. Fish. 27:339–341
    [Google Scholar]
  5. Andrykovitch G., Marx I. 1988; Isolation of a new polysaccharide-digesting bacterium from a salt marsh. Appl. Environ. Microbiol. 54:1061–1062
    [Google Scholar]
  6. Aoki T., Araki T., Kitamikado M. 1990; Isolation and purification of a porphyran-degrading bacterium. Bull. Jpn. Soc. Sci. Fish. 56:819–823
    [Google Scholar]
  7. Aoki T., Araki T., Kitamikado M. 1990; Purification and characterization of β-agarase from Vibrio sp. AP-2. Bull. Jpn. Soc. Sci. Fish. 56:825–830
    [Google Scholar]
  8. Baumann L., Baumann P., Mandel M., Allen R. D. 1972; Taxonomy of aerobic marine eubacteria. J. Bacteriol. 110:402–429
    [Google Scholar]
  9. De Vos P., Van Landschoot A., Segers P., Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B., Kersters K., Lizzaraga P., De Ley J. 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-tike strains by deoxyribonucleic acid:ribosomal ribonucleic acid hybridizations. Int. J. Syst. Bacteriol. 39:35–49
    [Google Scholar]
  10. Humm H. J. 1946; Marine agar-digesting bacteria of the south Atlantic coast. Bull. Duke Univ. Mar. Lab. 3:43–75
    [Google Scholar]
  11. Johnson J. L. 1991 DNA reassociation experiments. 21–44 Stackebrandt E., Goodfellow M.ed Nucleic acid techniques in bacterial systematics John Wiley & Sons; New York:
    [Google Scholar]
  12. Johnston K. H., McCandless E. L. 1973; Enzymic hydrolysis of the potassium chloride soluble fraction of carrageenan: properties of “κ-carrageenases” from Pseudomonas carrageenovora. Can. J. Microbiol. 19:779–788
    [Google Scholar]
  13. Kinoshita S., Kumoi Y., Ohshima A., Yoshida T., Kasai N. 1991; Isolation of an alginate-degrading organism and purification of its alginate lyase. J. Ferment. Bioeng. 72:74–78
    [Google Scholar]
  14. McLean M. W., Williamson F. B. 1979; κ-Carrageenase from Pseudomonas carrageenovora. Eur. J. Biochem. 93:553–558
    [Google Scholar]
  15. Rigby P. W. J., Diekmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase 1. J. Mol. Biol. 113:237–251
    [Google Scholar]
  16. Sarwar G., Sakata T., Kakimoto D. 1983; Isolation and characterization of carrageenan-decomposing bacteria from marine environment. J. Gen. Appl. Microbiol. 29:145–155
    [Google Scholar]
  17. Sawabe T., Ezura Y., Kimura T. 1992; Characterization of an alginolytic marine bacterium from decaying rishiri-kombu Laminaria japonica. Bull. Jpn. Soc. Sci. Fish. 58:141–145
    [Google Scholar]
  18. Schlesner H., Bartels C., Sittig M., Dorsch M., Stackebrandt E. 1990; Taxonomic and phylogenetic studies on a new taxon of budding, hyphal Proteobacteria, Hirschia baltica gen. nov., sp. nov. Int. J. Syst. Bacteriol. 40:443–451
    [Google Scholar]
  19. Suzuki K., Kaneko T., Komagata K. 1981; Deoxyribonucleic acid homologies among coryneform bacteria. Int. J. Syst. Bacteriol. 31:131–138
    [Google Scholar]
  20. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25:125–128
    [Google Scholar]
  21. Turvey J. R., Christison J. 1967; The hydrolysis of algal galactans by enzymes from a Cytophaga species. Biochem. J. 105:311–316
    [Google Scholar]
  22. Van Landschoot A., De Ley J. 1983; Intra- and intergeneric similarities of the rRNA cistrons of Alteromonas, Marinomonas(gen. nov.) and some other Gram-negative bacteria. J. Gen. Microbiol. 129:3057–3074
    [Google Scholar]
  23. Wang X. 1985; A new strain of agar-digesting bacteria which is able to decolorize melanoidin. Acta Microbiol. Sin. 25:289–293 In Chinese with English summary
    [Google Scholar]
  24. Weigel J., Turvey J. R., Yaphe W. 1965; The enzymic hydrolysis of κ-carrageenan with κ-carrageenase from Pseudomonas carrageenovora. Proc. Int. Seaweed Symp. 5:329–332
    [Google Scholar]
  25. Weigel J., Yaphe W. 1966; The enzymic hydrolysis of carrageenan by Pseudomonas carrageenovora: purification of a κ-carrageenase. Can. J. Microbiol. 12:939–947
    [Google Scholar]
  26. Yamaura I., Matsumoto T., Fumatsu M., Shigeiri H., Shibata T. 1991; Purification and some properties of agarase from Pseudomonas sp. PT-5. Agric. Biol. Chern. 55:2531–2536
    [Google Scholar]
  27. Yaphe W. 1957; The use of agarase from Pseudomonas atlantica in the identification of agar in marine algae (Rhodophyceae). Can. J. Microbiol. 3:987–993
    [Google Scholar]
  28. Yaphe W., Baxter B. 1955; The enzymic hydrolysis of carrageenin. Appl. Microbiol. 3:380–383
    [Google Scholar]
  29. Yaphe W., Morgan K. 1959; Enzymic hydrolysis of fucoidin by Pseudomonas atlantica and Pseudomonas carrageenovora. Nature (London) 183:761–762
    [Google Scholar]
  30. Yonemoto Y., Murata K., Kimura A., Yamaguchi H., Okayama K. 1991; Bacterial alginate lyase: characterization of alginate lyase-producing bacteria and purification of the enzyme. J. Ferment. Bioeng. 72:152–157
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-42-4-621
Loading
/content/journal/ijsem/10.1099/00207713-42-4-621
Loading

Data & Media loading...

Most cited Most Cited RSS feed