1887

Abstract

We studied seven strains of aerobic, marine, polarly flagellated bacteria which decompose alginate, agar, and carrageenan. The major respiratory quinone of these strains was ubiquinone-8. The G+C content of their DNA was 39.5 to 41.7 mol%. “” IAM 12927 and the conspecific five isolates were concluded to constitute a single species distinguished from the other nonpigmented species by DNA-DNA hybridization (homology values of more than 82%) and phenotypic similarity (similarity coefficients, based on assimilation of 145 carbon compounds, were 79 to 96%). “” IAM 12662, the sole extant strain, was distinct from “” and other species in DNA-DNA hybridization and phenotypic features. Taxonomic affinity to was indicated by DNA-DNA hybridization with “” IAM 12927 and the five conspecific isolates (39 to 55%) and with “” IAM 12662 (43 to 45%). Phenotypically, higher similarity values (79 to 89%) for assimilation of 145 carbon compounds were shared between IAM 12927 and the six conspecific strains, including “” IAM 12927. sp. nov. (type strain, IAM 12927, =ATCC 19262, =NCIMB 301) and (type strain, IAM 12662, =IFO 12985, =ATCC 43555, =NCIMB 302) are proposed for “” IAM 12927 and the conspecific five isolates and “” IAM 12662, respectively. A set of phenotypic features which differentiate the two species is described.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-42-4-621
1992-10-01
2022-08-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/42/4/ijs-42-4-621.html?itemId=/content/journal/ijsem/10.1099/00207713-42-4-621&mimeType=html&fmt=ahah

References

  1. Akagawa M., Yamasato K. 1989; Synonymy of Alcaligenes aquamarinus, Alcaligenes faecalis subsp. homari, and Deleya aesta: Deleya aquamarina comb. nov. as the type species of the genus Deleya. Int. J. Syst. Bacteriol. 39:462–466
    [Google Scholar]
  2. Akagawa-Matsushita M., Itoh T., Katayama Y., Kuraishi H., Yamasato K. Isoprenoid quinone composition of some marine Alteromonas, Marinomonas, Deleya, Pseudomonas and Shewanella species. J. Gen. Microbiol. in press
    [Google Scholar]
  3. Akagawa-Matsushita M., Yamada Y., Yamasato K. 1991; Characterization and identification of a restriction enzyme producing marine bacterium Deleya marina IAM 14114. Bull. JFCC 7:28–32
    [Google Scholar]
  4. Ando Y., Inoue K. 1961; Decomposition of alginic acid by microorganisms. IV. On the Vibrio-type bacteria, newly isolated from the decaying Laminaria. Bull. Jpn. Soc. Sci. Fish. 27:339–341
    [Google Scholar]
  5. Andrykovitch G., Marx I. 1988; Isolation of a new polysaccharide-digesting bacterium from a salt marsh. Appl. Environ. Microbiol. 54:1061–1062
    [Google Scholar]
  6. Aoki T., Araki T., Kitamikado M. 1990; Isolation and purification of a porphyran-degrading bacterium. Bull. Jpn. Soc. Sci. Fish. 56:819–823
    [Google Scholar]
  7. Aoki T., Araki T., Kitamikado M. 1990; Purification and characterization of β-agarase from Vibrio sp. AP-2. Bull. Jpn. Soc. Sci. Fish. 56:825–830
    [Google Scholar]
  8. Baumann L., Baumann P., Mandel M., Allen R. D. 1972; Taxonomy of aerobic marine eubacteria. J. Bacteriol. 110:402–429
    [Google Scholar]
  9. De Vos P., Van Landschoot A., Segers P., Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B., Kersters K., Lizzaraga P., De Ley J. 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-tike strains by deoxyribonucleic acid:ribosomal ribonucleic acid hybridizations. Int. J. Syst. Bacteriol. 39:35–49
    [Google Scholar]
  10. Humm H. J. 1946; Marine agar-digesting bacteria of the south Atlantic coast. Bull. Duke Univ. Mar. Lab. 3:43–75
    [Google Scholar]
  11. Johnson J. L. 1991 DNA reassociation experiments. 21–44 Stackebrandt E., Goodfellow M.ed Nucleic acid techniques in bacterial systematics John Wiley & Sons; New York:
    [Google Scholar]
  12. Johnston K. H., McCandless E. L. 1973; Enzymic hydrolysis of the potassium chloride soluble fraction of carrageenan: properties of “κ-carrageenases” from Pseudomonas carrageenovora. Can. J. Microbiol. 19:779–788
    [Google Scholar]
  13. Kinoshita S., Kumoi Y., Ohshima A., Yoshida T., Kasai N. 1991; Isolation of an alginate-degrading organism and purification of its alginate lyase. J. Ferment. Bioeng. 72:74–78
    [Google Scholar]
  14. McLean M. W., Williamson F. B. 1979; κ-Carrageenase from Pseudomonas carrageenovora. Eur. J. Biochem. 93:553–558
    [Google Scholar]
  15. Rigby P. W. J., Diekmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase 1. J. Mol. Biol. 113:237–251
    [Google Scholar]
  16. Sarwar G., Sakata T., Kakimoto D. 1983; Isolation and characterization of carrageenan-decomposing bacteria from marine environment. J. Gen. Appl. Microbiol. 29:145–155
    [Google Scholar]
  17. Sawabe T., Ezura Y., Kimura T. 1992; Characterization of an alginolytic marine bacterium from decaying rishiri-kombu Laminaria japonica. Bull. Jpn. Soc. Sci. Fish. 58:141–145
    [Google Scholar]
  18. Schlesner H., Bartels C., Sittig M., Dorsch M., Stackebrandt E. 1990; Taxonomic and phylogenetic studies on a new taxon of budding, hyphal Proteobacteria, Hirschia baltica gen. nov., sp. nov. Int. J. Syst. Bacteriol. 40:443–451
    [Google Scholar]
  19. Suzuki K., Kaneko T., Komagata K. 1981; Deoxyribonucleic acid homologies among coryneform bacteria. Int. J. Syst. Bacteriol. 31:131–138
    [Google Scholar]
  20. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25:125–128
    [Google Scholar]
  21. Turvey J. R., Christison J. 1967; The hydrolysis of algal galactans by enzymes from a Cytophaga species. Biochem. J. 105:311–316
    [Google Scholar]
  22. Van Landschoot A., De Ley J. 1983; Intra- and intergeneric similarities of the rRNA cistrons of Alteromonas, Marinomonas(gen. nov.) and some other Gram-negative bacteria. J. Gen. Microbiol. 129:3057–3074
    [Google Scholar]
  23. Wang X. 1985; A new strain of agar-digesting bacteria which is able to decolorize melanoidin. Acta Microbiol. Sin. 25:289–293 In Chinese with English summary
    [Google Scholar]
  24. Weigel J., Turvey J. R., Yaphe W. 1965; The enzymic hydrolysis of κ-carrageenan with κ-carrageenase from Pseudomonas carrageenovora. Proc. Int. Seaweed Symp. 5:329–332
    [Google Scholar]
  25. Weigel J., Yaphe W. 1966; The enzymic hydrolysis of carrageenan by Pseudomonas carrageenovora: purification of a κ-carrageenase. Can. J. Microbiol. 12:939–947
    [Google Scholar]
  26. Yamaura I., Matsumoto T., Fumatsu M., Shigeiri H., Shibata T. 1991; Purification and some properties of agarase from Pseudomonas sp. PT-5. Agric. Biol. Chern. 55:2531–2536
    [Google Scholar]
  27. Yaphe W. 1957; The use of agarase from Pseudomonas atlantica in the identification of agar in marine algae (Rhodophyceae). Can. J. Microbiol. 3:987–993
    [Google Scholar]
  28. Yaphe W., Baxter B. 1955; The enzymic hydrolysis of carrageenin. Appl. Microbiol. 3:380–383
    [Google Scholar]
  29. Yaphe W., Morgan K. 1959; Enzymic hydrolysis of fucoidin by Pseudomonas atlantica and Pseudomonas carrageenovora. Nature (London) 183:761–762
    [Google Scholar]
  30. Yonemoto Y., Murata K., Kimura A., Yamaguchi H., Okayama K. 1991; Bacterial alginate lyase: characterization of alginate lyase-producing bacteria and purification of the enzyme. J. Ferment. Bioeng. 72:152–157
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-42-4-621
Loading
/content/journal/ijsem/10.1099/00207713-42-4-621
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error