gen. nov., sp. nov., a New, Extremely Halotolerant, Hydrocarbon-Degrading Marine Bacterium Free

Abstract

On the basis of phenotypical characteristics and analysis of 16S rRNA sequence, a new species belonging to a new genus is described, and the name is proposed. This organism, isolated from Mediterranean seawater near a petroleum refinery, is a gram-negative, aerobic, rod-shaped bacterium. It grows at NaCl concentrations of 0.08 to 3.5 M and uses various hydrocarbons as the sole source of carbon and energy. Its DNA has a guanine-plus-cytosine content of 52.7 mol%. The 16S rRNA analysis shows a clear affiliation between and the gamma group of the phylum A close phylogenetic relationship appears among the species , and Because of the impossibility of finding a single most closely related species, we suggest that this bacterium be assigned to a new genus, at least temporarily. The possibility of a revision of this status when new data appear is, however, not excluded. The type strain is SP.17 (=ATCC 49840).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-42-4-568
1992-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/42/4/ijs-42-4-568.html?itemId=/content/journal/ijsem/10.1099/00207713-42-4-568&mimeType=html&fmt=ahah

References

  1. Al-Mallah M., Goutx M., Mille G., Bertrand J. C. 1990; Production of emulsifying agents during growth of a marine Alteromonas in seawater with eicosane as carbon source, a solid hydrocarbon. Oil Chern. Pollut. 6:289–305
    [Google Scholar]
  2. Baumann P., Baumann L., Mandel M. 1971; Taxonomy of marine bacteria: the genus Beneckea. J. Bacteriol. 107:268–294
    [Google Scholar]
  3. Baumann P., Baumann L. 1981 The marine Gram-negative eubacteria; genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes,. 1302–1330 Starr M. P., Stolp H., Triiper H. G., Balows A., Schlegel H. G.ed The procaryotes Springer-Verlag; Berlin:
    [Google Scholar]
  4. Baumann P., Gauthier M. J., Baumann L. 1984 Genus Alteromonas Baumann, Baumann, Mandel and Allen, 1972, 418. 243–352 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  5. Bertrand J. C., Bazin H., Azoulay E. 1976 Isolement et étude d’une bactérie marine se développant sur hydrocarbures. II. Etude de la lyse et de la viabilité. Ann. Microbiol Institut Pasteur; 127B393–409
    [Google Scholar]
  6. Bertrand J. C., Al-Mallah M., Acquaviva M., Mille G. 1990; Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett. Appl. Microbiol. 11:260–263
    [Google Scholar]
  7. Bonin P., Gilewicz M., Bertrand J. C. 1987; Denitrification by a marine bacterium Pseudomonas nautica strain 617. Ann. Inst. Pasteur/Microbiologie 138:371–383
    [Google Scholar]
  8. Bonin P., Gilewicz M., Denis M., Bertrand J. C. 1989; Salt requirements in the denitrifying bacterium Pseudomonas nautica 617. Res. Microbiol. 140:159–169
    [Google Scholar]
  9. Chabbert Y. A. 1963 L’antibiogramme. Collection techniques de base. Editions La Tourelle, St. Mandé; France:
    [Google Scholar]
  10. Chan Y. K., Knowles R. 1979; Measurement of denitrification in freshwater sediments by an in situ acetylene inhibition method. Appl. Environ. Microbiol. 37:1067–1072
    [Google Scholar]
  11. Costerton J. W., Fosberg C., Matula T. I., Buckmire F. L. A., McLeod R. A. 1967; Nutrition and metabolism of marine bacteria. XVI. Formation of protoplasts, spheroplasts, and related forms from a Gram-negative marine bacterium. J. Bacteriol. 94:1764–1777
    [Google Scholar]
  12. Denis M., Richaud P. 1982; Dynamics of carbon monoxide recombination to fully reduced cytochrome c oxidase in plant mitochondria after low-temperature flash photolysis. Biochem. J. 206:379–385
    [Google Scholar]
  13. De Voe I. W., Oginsky E. L. 1969; Antagonistic effect of monovalent cations in maintenance of cellular integrity of a marine bacterium. J. Bacteriol. 98:1355–1367
    [Google Scholar]
  14. De Voe I. W., Oginsky E. L. 1969; Cation interactions and biochemical composition of the cell envelope of a marine bacterium. J. Bacteriol. 98:1368–1377
    [Google Scholar]
  15. Felsenstein J. 1990 PHYLIP manual version 3.3. University Herbarium, University of California; Berkeley:
    [Google Scholar]
  16. Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Balch W. E., Tanner R. S., Magrum L. J., Zablen L. B., Blakemore R., Gupta R., Bonen L., Lewis B. J., Stahl D. A., Luehrsen K. R., Chen K. N., Woese C. R. 1980; The phylogeny of prokaryotes. Science 209:457–463
    [Google Scholar]
  17. Gauthier M. J., Breittmayer V. A. 1992 The genera Alteromonas and Marinomonas,. 3046–3070 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H.ed The prokaryotes 3 Springer-Verlag; New York:
    [Google Scholar]
  18. Jahn K. 1986 Isolation and characterisation of fimbriae from Escherichia coli,. 381–388 Sussman M.ed The virulence of Escherichia coli. Reviews and methods. The Society for General Microbiology Academic Press; London:
    [Google Scholar]
  19. Johnson J. L. 1981 Genetic characterization. 450–472 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  20. Kersters K., De Ley J. 1984 Genus Alcaligenes Castellani and Chalmers 1919, 936AL. 361–373 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  21. Khanna G., De Voe L., Brown L., Niven D. F., McLeod R. A. 1984; Relationship between ion requirements for respiration and membrane transport in a marine bacterium. J. Bacteriol. 157:59–63
    [Google Scholar]
  22. Krieg N. R. 1984 Genus Oceanospirillum Hylemon, Wells, Krieg and Jannasch 1973, 361AL. 104–110 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  23. Laddaga R., McLeod R. A. 1982; Factors affecting the lytic susceptibility of marine and terrestrial bacteria. Can. J. Microbiol. 24:414–424
    [Google Scholar]
  24. Larsen H. 1986; Halophilic and halotolerant microorganisms: an overview and historical perspectives. FEMS Microbiol. Rev. 39:3–7
    [Google Scholar]
  25. MacAulife L. 1971; GC determination of solutes by multiple phase equilibrium. Chern. Technol. 25:46–51
    [Google Scholar]
  26. Marmur J. 1961; A procedure for the isolation of DNA from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  27. Merkel J. R. 1972; Influence of salts on the vibriostatic action of 2,4-diamino-6,7-diiosopropyl pteridine. Arch. Microbiol. 81:379–382
    [Google Scholar]
  28. Qu L. H., Michot B., Bachellerie J. P. 1983; Improved method for structure probing in large RNAs: a rapid heterologous sequencing approach is coupled to the direct mapping of nuclease accessible sites. Application to the 5′ terminal domain of eukaryotic 28S rRNA. Nucleic Acids Res. 11:5903–5920
    [Google Scholar]
  29. Ratledge C. 1978 Degradation of aliphatic hydrocarbons. 1–46 Watkinson R. J.ed Development in biodegradation of hydrocarbons Applied Science Publishers Ltd.; London:
    [Google Scholar]
  30. Rayman M. K., McLeod R. A. 1975; Interaction of Mg2+with peptidoglycan and its relation to the prevention of lysis of a marine pseudomonad. J. Bacteriol. 122:650–659
    [Google Scholar]
  31. Rehm H. J., Reiff I. 1981; Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Adv. Biochem. Eng. 19:175–215
    [Google Scholar]
  32. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  33. Smibert R. M., Krieg N. R. 1981 General characterization. 409–443 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  34. Smith A. B., Lafay B., Christen R. Comparative variation of morphological and molecular evolution through geologic time: 28S ribosomal RNA versus morphology in echinoids. Philos. Trans. Royal Soc. London B in press
    [Google Scholar]
  35. Stackebrandt E. 1988; Phylogenetic relationships vs. phenotypic diversity: how to achieve a phylogenetic classification of the eubacteria. Can. J. Microbiol. 34:552–556
    [Google Scholar]
  36. Stackebrandt E., Murray R. G. E., Trüper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.”. Int. J. Syst. Bacteriol. 38:321–325
    [Google Scholar]
  37. Stevenson P. M., Ruettinger R. T., Fulco A. J. 1983; Cytochrome P-450 revealed: the effect of the respiratory cytochromes on the spectrum of bacterial cytochrome P-450. Biochem. Biophys. Res. Commun. 112:927–934
    [Google Scholar]
  38. Swofford D. 1990 PAUP: phylogenetic analysis using parsimony, version 3.0. Computer program distributed by the Illinois Natural History Survey; Champaign:
    [Google Scholar]
  39. Tiedje J. M. 1988 Ecology of denitrification and dissimilatory nitrate reduction to ammonium. 179–244 Zehnder A. J. B.ed Biology of anaerobic microorganisms, tome I John Wiley & Sons, Inc.; New York:
    [Google Scholar]
  40. Van de Peer Y., Neefs J., De Wachter R. 1990; Small ribosomal subunit RNA sequences, evolutionary relationships among different life forms, and mitochondrial origins. J. Mol. Evol. 30:463–476
    [Google Scholar]
  41. Vreeland R. H. 1984 Genus Halomonas Vreeland, Litchfield, Martin and Elliot, 1980, 494. 340–343 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  42. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata, gen. nov.: a previously uncharacterized bacterial genus isolated from a Caribbean solar salt facility. Int. J. Syst. Bacteriol. 30:485–495
    [Google Scholar]
  43. Vreeland R. H., Matin E. L. 1980; Growth characteristics, effects of temperature, and ion specificity of the halo tolerant bacterium Halomonas elongata. Can. J. Microbiol. 26:746–752
    [Google Scholar]
  44. Woese C., Stakebrandt E., Macke T., Fox G. 1985; A phylogenetic definition of the major eubacterial taxa. Syst. Appl. Microbiol. 6:143–151
    [Google Scholar]
  45. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  46. Woese C. R., Fox G. E. 1977; Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74:5088–5090
    [Google Scholar]
  47. Woese C. R., Kandler O., Wheelis M. L. 1990; Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc. Natl. Acad. Sci. USA 87:4576–4579
    [Google Scholar]
  48. Woese C. R., Weisburg W. G., Hahn C. M., Paster B. J., Zablen L. B., Lewis B. J., Macke T. J., Ludwig W., Stackebrandt E. 1985; The phylogeny of purple bacteria: the gamma subdivision. Syst. Appl. Microbiol. 6:25–33
    [Google Scholar]
  49. ZoBell C. E. 1941; Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J. Mar. Res. 4:42–75
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-42-4-568
Loading
/content/journal/ijsem/10.1099/00207713-42-4-568
Loading

Data & Media loading...

Most cited Most Cited RSS feed