Taxonomy and Halotolerance of Mesophilic Methanosarcina Strains, Assignment of Strains to Species, and Synonymy of and Free

Abstract

We examined 22 previously described and newly isolated strains by performing denaturing gel electrophoresis of whole-cell proteins and assigned these strains to previously described species. S-6 (T = type strain) and C 16 were very similar in terms of the electrophoresis patterns of their proteins and in their DNA sequences (the results of reassociation experiments indicated that there was 77% sequence similarity). Thus, is a junior subjective synonym of , and strain C 16 is a reference strain of C 16 was similar to in other characteristics that have not been reported previously, including the ability to catabolize acetate and a lack of halophily. All of the strains examined, including the marine strains C 16 (= C 16) and C2A, were slightly halotolerant (rather than halophilic, as originally described). sp. strain FR-1, which has gas vesicles, was more similar to MS than to Z-761 in both its protein patterns and its DNA sequence (80% similarity to MS and 38% similarity to Z-761). Thus, the presence of gas vesicles is not an adequate taxonomic characteristic for assigning strains to

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-42-4-561
1992-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/42/4/ijs-42-4-561.html?itemId=/content/journal/ijsem/10.1099/00207713-42-4-561&mimeType=html&fmt=ahah

References

  1. Archer D. B., King N. R. 1983; A novel ultrastructural feature of a vacuolated Methanosarcina. FEMS Microbiol. Lett. 16:217–223
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique physiological group. Microbiol. Rev. 43:260–296
    [Google Scholar]
  3. Blotevogel K.-H., Fischer U. 1989; Transfer of Methanococcus frisius to the genus Methanosarcina as Methanosarcina frisia comb. nov. Int. J. Syst. Bacteriol. 39:91–92
    [Google Scholar]
  4. Blotevogel K.-H., Fischer U., Lüpkes K. H. 1986; Methanococcus frisius sp. nov., a new methylotrophic marine methanogen. Can. J. Microbiol. 32:127–131
    [Google Scholar]
  5. Blotevogel K.-H., Macario A. J. L. 1989; Antigenic relationship of Methanococcus frisius. Syst. Appl. Microbiol. 11:148–150
    [Google Scholar]
  6. Boone D. R., Johnson R. L., Liu Y. 1989; Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl. Environ. Microbiol. 55:1735–1741
    [Google Scholar]
  7. Boone D. R., Menaia J. A. G. F., Boone J. E., Mah R. A. 1987; Effects of hydrogen pressure during growth and effects of pregrowth with hydrogen on acetate degradation by Methanosarcina species. Appl. Environ. Microbiol. 53:83–87
    [Google Scholar]
  8. Boone D. R., Whitman W. B. 1988; Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int. J. Syst. Bacteriol. 38:212–219
    [Google Scholar]
  9. Bryant M. P., Boone D. R. 1987; Emended description of strain MST (= DSM 800T), the type strain of Methanosarcina barkeri. Int. J. Syst. Bacteriol. 37:169–170
    [Google Scholar]
  10. Daniels L., Fuchs G., Thauer R. K., Zeikus J. G. 1977; Carbon monoxide oxidation by methanogenic bacteria. J. Bacteriol. 132:118–126
    [Google Scholar]
  11. Deppenmeier V., Blaut M., Jussofie A., Gottschalk G. 1988; A methyl-coM methylreductase system from methanogenic bacterium strain Gol not requiring ATP for activity. FEBS Lett. 241:60–64
    [Google Scholar]
  12. Deutsche Sammlung von Mikroorganismen 1983 Catalog of strains. Deutsche Sammlung von Mikroorganismen; Braunschweig, Germany:
    [Google Scholar]
  13. Deutsche Sammlung von Mikroorganismen 1989 Catalog of strains. Deutsche Sammlung von Mikroorganismen; Braunschweig, Germany:
    [Google Scholar]
  14. Ferguson T. L. 1982 Ph.D. thesis University of California; Los Angeles:
  15. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  16. Johnson J. L. 1985; DNA reassociation and RNA hybridization of bacterial nucleic acids. Methods Microbiol. 18:33–76
    [Google Scholar]
  17. Kandler O., Hippe H. 1977; Lack of peptidoglycan in the cell walls of Methanosarcina barkeri. Arch. Microbiol. 113:57–60
    [Google Scholar]
  18. Liu Y., Boone D. R., Choy C. 1990; Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int. J. Syst. Bacteriol. 40:111–116
    [Google Scholar]
  19. Liu Y., Boone D. R., Sleat R., Mah R. A. 1985; Methanosarcina mazei LYC, a new methanogenic isolate which produces a disaggregating enzyme. Appl. Environ. Microbiol. 49:608–613
    [Google Scholar]
  20. Lysenko A. M., Zhilina T. N. 1985; Taxonomic position of Methanosarcina vacuolata and Methanococcus halophilus determined by the technique of DNA-DNA hybridization. Mikrobiologiya 54:501–502
    [Google Scholar]
  21. Maestrojuán G. M., Boone D. R. 1991; Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T. Int. J. Syst. Bacteriol. 41:267–274
    [Google Scholar]
  22. Maestrojuán G. M., Boone D. R., Zhang L., Mah R. A. 1990; Transfer of Methanogenium bourgense, Methanogenium marisnigri, Methanogenium olentangyi, and Methanogenium thermophilicum to the genus Methanoculleus gen. nov., emendation of Methanoculleus marisnigri and Methanogenium, and description of a new strain of Methanoculleus marisnigri-. Int. J. Syst. Bacteriol. 40:117–122
    [Google Scholar]
  23. Mah R. A. 1980; Isolation and characterization of Methanococcus mazei. Curr. Microbiol. 3:321–326
    [Google Scholar]
  24. Mah R. A., Boone D. R. 1987 Methanosarcina,. 2198–2205 Staley J. T., Pfennig N., Murray R. G. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  25. Mah R. A., Kuhn D. A. 1984; Transfer of the type species of the genus Methanococcus to the genus Methanosarcina, naming it Methanosarcina mazei (Barker 1936) comb. nov. et emend, and conservation of the genus Methanococcus (Approved Lists 1980) with Methanococcus vannielii (Approved Lists 1980) as the type species. Int. J. Syst. Bacteriol. 34:263–265
    [Google Scholar]
  26. Mah R. A., Smith M. R., Baresi L. 1978; Studies on an acetate-fermenting strain of Methanosarcina. Appl. Environ. Microbiol. 35:1174–1184
    [Google Scholar]
  27. Mayerhofer L. E., Macario A. J. L., Conway de Macario E. 1992; Lamina, a novel multicellular form of Methanosarcina mazei S-6. J. Bacteriol. 174:309–314
    [Google Scholar]
  28. McInerney M. J., Mackie R. I., Bryant M. P. 1981; Syntrophic association of a butyrate-degrading bacterium and methanosarcina enriched from bovine rumen fluid. Appl. Environ. Microbiol. 41:826–828
    [Google Scholar]
  29. Oakley C. E., Weil C. F., Kretz P. L., Oakley B. R. 1987; Cloning of the riboB locus of Aspergillus nidulans. Gene 53:293–298
    [Google Scholar]
  30. Oregon Collection of Methanogens 1990 Catalog of strains. Oregon Graduate Institute; Beaverton:
    [Google Scholar]
  31. Powell G. E. 1983; Interpreting gas kinetics of batch cultures. Biotechnol. Lett. 5:437–440
    [Google Scholar]
  32. Ranade D. R., Kadam P. C., Godbole S. H. 1989; Methanogens from aquatic sediments in India. 1545th International Symposium on Microbial EcologyKyoto, Japan
    [Google Scholar]
  33. Rouvière P. E., Wolfe R. S. 1987; Use of subunits of the methylreductase protein for taxonomy of methanogenic bacteria. Arch. Microbiol. 148:253–259
    [Google Scholar]
  34. Scherer P. A., Bochem H. P. 1983; Ultrastructural investigation of 12 Methanosarcina and related species grown on methanol for occurrence of polyphosphatelike inclusions. Can. J. Microbiol. 29:1190–1199
    [Google Scholar]
  35. Scherer P. A., Bochem H. P., Davis J. D., White D. C. 1985; Flocculation in methanogens, a comparative study of Methanosarcina barkeri strains Julich and Fusaro. Can. J. Microbiol. 32:137–144
    [Google Scholar]
  36. Schnellen C. G. T. P. 1947; Onderzekingen over de methaanginsting. Ph.D. thesis Technisches Hoogeschool Delft, Druckkerij “De Maastad,” Rotterdam; The Netherlands:
    [Google Scholar]
  37. Smith M. R., Mah R. A. 1981; 2-Bromoethanesulfonate: a selective agent for isolating resistant methanosarcina mutants. Curr. Microbiol. 6:321–326
    [Google Scholar]
  38. Smith P. H. 1966; The microbial ecology of sludge methanogenesis. Dev. Ind. Microbiol. 7:155–161
    [Google Scholar]
  39. Sowers K. R., Baron S. F., Ferry J. G. 1984; Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl. Environ. Microbiol. 47:971–978
    [Google Scholar]
  40. Sowers K. R., Gunsalus R. P. 1988; Adaptation for growth at various saline concentrations by the archaebacterium Methanosarcina thermophila. J. Bacteriol. 170:998–1002
    [Google Scholar]
  41. Sowers K. R., Johnson J. L., Ferry J. G. 1984; Phylogenetic relationships among the methylotrophic methane-producing bacteria and emendation of the family Methanosarcinaceae. Int. J. Syst. Bacteriol. 34:444–450
    [Google Scholar]
  42. Stadtman T. C., Barker H. A. 1951; Studies on the methane fermentation. IX. The origin of methane in the acetate and methanol fermentations by Methanosarcina. J. Bacteriol. 61:81–86
    [Google Scholar]
  43. Summerton J., Atkins T., Bestwick R. 1983; A rapid method for preparation of bacterial plasmids. Anal. Biochem. 133:79–84
    [Google Scholar]
  44. Thomas I., Verrier D., Dubourguier H. C., Hanoune H., Langrand C. 1986 Numerical analysis of whole-cell protein patterns of methanogens. 245–253 Dubourguier H. C., Albagnac G., Montreuil J., Romond C., Sautière P., Guillaume J.ed Biology of anaerobic bacteria Elsevier Science Publishers B. V.; Amsterdam:
    [Google Scholar]
  45. Weimer P. J., Zeikus J. G. 1978; Acetate metabolism in Methanosarcina barkeri. Arch. Microbiol. 119:175–182
    [Google Scholar]
  46. Xun L., Boone D. R., Mah R. A. 1988; Control of the life cycle of Methanosarcina mazei S-6 by manipulation of growth conditions. Appl. Environ. Microbiol. 54:2064–2068
    [Google Scholar]
  47. Zhilina T. N. 1978; Growth of a pure Methanosarcina culture, biotype 2, on acetate. Mikrobiologiya 47:321–323
    [Google Scholar]
  48. Zhilina T. N., Zavarzin G. A. 1979; Cyst formation by Methanosarcina. Mikrobiologiya 48:349–354
    [Google Scholar]
  49. Zhilina T. N., Zavarzin G. A. 1987; Methanosarcina vacuolata sp. nov., a vacuolated methanosarcina. Int. J. Syst. Bacteriol. 37:281–283
    [Google Scholar]
  50. Zhilina T. N., Zavarzin G. A. 1989; Comparative cytology of Methanosarcinaceae and description of Methanosarcina vacuolata sp. nov. Mikrobiologiya 48:451–458
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-42-4-561
Loading
/content/journal/ijsem/10.1099/00207713-42-4-561
Loading

Data & Media loading...

Most cited Most Cited RSS feed