Genomic Heterogeneity of the Genus Free

Abstract

The genomic diversity among 22 strains was investigated by determining rRNA gene restriction patterns, DNA hybridization characteristics, and DNA base compositions. The guanine-plus-cytosine contents of the DNAs ranged from 58 to 61 mol%. As determined by DNA hybridization (S1 nuclease method), five DNA genomic groups were differentiated, and these groups formed three genomic species. Genomic species 1, which corresponded to , was split into three subspecies. Subspecies 1a contained strain W (= ATCC 25391), the type strain of subspecies 1b contained proposed reference strain 6R; and subspecies 1c contained a strain of (strain ATCC 14123). Genomic species 2, which has not been described previously and which contained proposed reference strain LL and four strains that were isolated from lake sediments, was distinct from and This species is not named in this paper since it could not be differentiated from and on the basis of phenotypic characteristics. Genomic species 3 corresponded to and was distantly related to the other genomic species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-42-4-554
1992-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/42/4/ijs-42-4-554.html?itemId=/content/journal/ijsem/10.1099/00207713-42-4-554&mimeType=html&fmt=ahah

References

  1. American Type Culture Collection 1989 Catalogue of bacteria and bacteriophage. , 17th. American Type Culture Collection; Rockville, Md:
    [Google Scholar]
  2. Auran T. B., Schmidt E. L. 1972; Similarities between Hyphomicrobium and Nitrobacter’with respect to fatty acids. J. Bacteriol. 109:450–451
    [Google Scholar]
  3. Belser L. W. 1979; Population ecology of nitrifying bacteria. Annu. Rev. Microbiol. 33:309–333
    [Google Scholar]
  4. Belser L. W., Schmidt E. L. 1978; Serological diversity within a terrestrial ammonia-oxydizing population. Appl. Environ. Microbiol. 36:589–593
    [Google Scholar]
  5. Bock E., Koops H.-P., Möller U. C., Rudert M. 1990; A new facultatively nitrite oxidizing bacterium, Nitrobacter vulgaris sp. nov. Arch. Microbiol. 153:105–110
    [Google Scholar]
  6. Bock E., Sundermeyer-Klinger H., Stackebrandt E. 1983; New facultative lithotrophic nitrite-oxidizing bacteria. Arch. Microbiol. 136:281–284
    [Google Scholar]
  7. Breed R. S., Murray E. G. D., Smith N. R.ed 1957 Bergey’s manual of determinative bacteriology, 7th.1094 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  8. Brenner D. J., McWorter A. C., Leete Knutson J. K., Steigerwalt A. G. 1982; Escherichia vulneris: a new species otEnterobacteriaceae associated with human wounds. J. Clin. Microbiol. 15:1133–1140
    [Google Scholar]
  9. Crosa J. M., Brenner D. J., Falkow S. 1973; Use of a single-strand-specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and heteroduplexes. J. Bacteriol. 115:904–911
    [Google Scholar]
  10. Fernandez M. P., Meugnier H., Grimont P. A. D., Bardin R. 1989; Deoxyribonucleic acid reladness among members of the genus Frankia. Int. J. Syst. Bacteriol. 40:424–429
    [Google Scholar]
  11. Fliermans C. B., Bohlool B. B., Schmidt E. L. 1974; Autecological study of chemoautotroph Nitrobacter by immunofluorescence. Appl. Microbiol. 27:124–129
    [Google Scholar]
  12. Freitag A., Rudert M., Bock E. 1987; Growth of Nitrobacter by dissimilatory nitrate reduction. FEMS Microbiol. Lett. 48:105–109
    [Google Scholar]
  13. Gay G., Corman A. 1984; Comparative study of the growth of two strains of Nitrobacter in batch and continuous culture. Microb. Ecol. 10:99–105
    [Google Scholar]
  14. Gay G., Josserand A., Bardin R. 1983; Growth of two serotypes of Nitrobacter in mixotrophic and chemoorganotrophic conditions. Can. J. Microbiol. 29:394–397
    [Google Scholar]
  15. Grimont F. Unpublished data
  16. Grimont F., Grimont P. A. D. 1986; Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Ann. Inst. Pasteur/MicrobioL (Paris) 137B:165–175
    [Google Scholar]
  17. Grimont F., Grimont P. A. D. 1990; La carte d’identite génétique des bactéries. Biofutur 95:50–52
    [Google Scholar]
  18. Grimont P. A. D. 1988; Use of DNA reassociation in bacterial classification. Can. J. Microbiol. 34:541–546
    [Google Scholar]
  19. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr. Microbiol. 4:325–330
    [Google Scholar]
  20. Irino K., Grimont F., Casin I., Grimont P. A. D.The Brazilian Purpuric Fever Study Group 1988; rRNA gene restriction patterns of Haemophilus influenzae biogroup aegyptius strains associated with Brazilian purpuric fever. J. Clin. Microbiol. 26:1535–1538
    [Google Scholar]
  21. Josserand A. 1983 Ph.D. thesis Université Lyon I, Villeurbanne; France:
  22. Josserand A., Bardin R. 1981; Nitrification en sol acide. I. Mise en evidence de germes autotrophes nitrifiants (genre Nitrobacter) dans un sol forestier sous resineux. Rev. Ecol. Biol. Sol 18:435–445
    [Google Scholar]
  23. Josserand A., Cleyet-Marel J. C. 1979; Isolation from soils of Nitrobacter and evidence for novel serotypes using immunofluorescence. Microb. Ecol. 5:207–213
    [Google Scholar]
  24. Kalthoff H., Fehr S., Sundermeyer H., Renwrantz L., Bock E. 1979; A comparison by means of antisera and lectins of surface structures of Nitrobacter winogradskyi and N. agilis. Curr. Microbiol. 2:375–380
    [Google Scholar]
  25. MacDonald R. M. 1986 Nitrification in soil: introductory history. 17–38 Prosser J. I.ed Nitrification SGM IRL Press; Oxford:
    [Google Scholar]
  26. Navarro E., Josserand A., Bernillon B., Bardin R. 1987; Aspects microbiens de la nitrification: effects des variations quantitatives et diversite des souches de Nitrobacter. Rev. Ecol. Biol. Sol 24:591–602
    [Google Scholar]
  27. Navarro E., Simonet P., Normand P., Bardin R. 1992; Characterization of natural population of Nitrobacter spp. using PCR/RFLP analysis of the ribosomal intergenic spacer. Arch. Microbiol. 157:107–115
    [Google Scholar]
  28. Nelson D. H. 1931; Isolation and characterization oiNitrosomonas and Nitrobacter. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Abt. 2 83:280–311
    [Google Scholar]
  29. Pan P. H. C. 1971; Lack of distinction between Nitrobacter agilis and Nitrobacter winogradskyi. J. Bacteriol. 108:1416–1418
    [Google Scholar]
  30. Peyret M., Freney J., Meugnier H., Fleurette J. 1989; Determination of G+C content of DNA using high-performance liquid chromatography for the identification of staphylococci and micrococci. Res. Microbiol. 140:467–475
    [Google Scholar]
  31. Prosser J. I., Cox D. J. 1982 Nitrification. 178–193 Bums R. G., Slater J. H.ed Experimental microbial ecology Blackwell Scientific Publications; Oxford:
    [Google Scholar]
  32. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Int. J. Syst. Bacteriol. 113:237–251
    [Google Scholar]
  33. Robert F. M., Schmidt E. L. 1985; Somatic serogroups among 55 strains of Rhizobium phaseoli. Can. J. Microbiol. 31:519–523
    [Google Scholar]
  34. Schaffer H. E., Sederoff R. R. 1981; Improved estimation of DNA fragment length from agarose gels. Anal. Biochem. 115:113–122
    [Google Scholar]
  35. Schmidt E. L., Belser L. W. 1982 Nitrifying bacteria. 1027–1042 Miller R. H., Keeney D. R.ed Methods of soil analysis, 2nd. American Society of Agronomists; Madison, Wis:
    [Google Scholar]
  36. Schmidt E. L., Molina J. A. E., Chiang C. 1973; Isolation of chemoautotrophic nitrifiers from Moroccan soils. Bull. Ecol. Res. Comm. (Stockholm) 17:166–167
    [Google Scholar]
  37. Seewaldt E., Schleifer K. H., Bock E., Stackebrandt E. 1982; The close phylogenetic relationship of Nitrobacter and Rhodopseudomonas palustris. Arch. Microbiol. 131:287–290
    [Google Scholar]
  38. Simonet P., Capellano A., Navarro E., Bardin R., Moiroud A. 1984; An improved method for lysis of Frankia with achromopeptidase allows detection of new plasmid. Can. J. Microbiol. 30:1292–1295
    [Google Scholar]
  39. Skerman V. B. D., McGowan V., Sneath P. H. A.ed 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30:225–420
    [Google Scholar]
  40. Smith A. J., Hoare D. S. 1968; Acetate assimilation by Nitrobacter agilis in relation to its “obligate autotrophy.”. J. Bacteriol. 95:844–855
    [Google Scholar]
  41. Soriano S., Walker N. 1968; Isolation of ammonia oxidizing autotrophic bacteria. J. Appl. Bacteriol. 31:493–498
    [Google Scholar]
  42. Soriano S., Walker N. 1973; The nitrifying bacteria in soils from Rothamsted classical fields and elsewhere. J. Appl. Bacteriol. 36:523–529
    [Google Scholar]
  43. Stackebrandt E., Murray R. G. E., Trüper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.”. Int. J. Syst. Bacteriol. 38:321–325
    [Google Scholar]
  44. Stanley P. M., Schmidt E. L. 1981; Serological diversity of Nitrobacter spp. from soil and aquatic habitats. Appl. Environ. Microbiol. 41:1069–1071
    [Google Scholar]
  45. Steinmüller W., Bock E. 1976; Growth of Nitrobacter in the presence of organic matter. I. Mixotrophic growth. Arch. Microbiol. 108:299–304
    [Google Scholar]
  46. Watson S. W. 1974 Family I. Nitrobacteraceae,. 450–456 Buchanan R. E., Gibbons N. E.ed Bergey’s manual of determinative bacteriology, 8th. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  47. Watson S. W., Bock E., Harms H., Koops H.-P., Hooper A. B. 1989 Nitrifying bacteria. 1808–1834 Holt J. C., Staley J. T., Bryant M. P., Pfenning N.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  48. Watson S. W., Mandel M. 1971; Comparison of the morphology and deoxyribonucleic acid composition of 27 strains of nitrifying bacteria. J. Bacteriol. 107:563–569
    [Google Scholar]
  49. Watson S. W., Waterbury J. B. 1971; Characteristics of two marine nitrite oxidizing bacteria, Nitrospina gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp. Arch. Mikrobiol. 77:203–230
    [Google Scholar]
  50. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Trüper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 34:463–464
    [Google Scholar]
  51. Winogradsky S. 1892; Contributions à la morphologie des organismes de la nitrification. Arch. Sci. Biol. St. Petersb. 1:88–137
    [Google Scholar]
  52. Woese C. R., Stackebrandt E., Weisburg W. G., Paster B. J., Madigan M. T., Fowler V. J., Hahn C. M., Blanz P., Gupta R., Nealson K. H., Fox G. E. 1984; The phylogeny of purple bacteria: the alpha subdivision. Syst. Appl. Microbiol. 5:315–326
    [Google Scholar]
  53. Woldendorp J. W., Laanbroek H. J. 1989; Activity of nitrifiers in relation to nitrogen nutrition of plants in natural ecosystems. Plant Soil 115:217–228
    [Google Scholar]
  54. Wood P. M. 1986 Nitrification as a bacterial energy source. 39–62 Prosser J. I.ed Nitrification SGM IRL Press; Oxford:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-42-4-554
Loading
/content/journal/ijsem/10.1099/00207713-42-4-554
Loading

Data & Media loading...

Most cited Most Cited RSS feed