1887

Abstract

Coryneform bacteria that were isolated from biofilters which are used for waste gas treatment of animal-rendering plant emissions were differentiated and partially identified by using chemotaxonomic methods. On the basis of the results of a numerical analysis of whole-cell fatty acid profiles, 79 isolates were divided into two major groups; the members of the first group contained saturated and monounsaturated fatty acids, whereas the members of the second group were characterized by iso- and anteiso-branched fatty acids. Division into subclusters was based mainly on quantitative differences in fatty acid composition and was confirmed by the results obtained for additional chemical markers (e.g., respiratory quinones, mycolic acids, polar lipids, cell wall amino acids, and whole-cell sugar patterns). By combining the results obtained for chemotaxonomic analyses that were performed for strains containing saturated and monounsaturated fatty acids, we were able to identify the genus (two species were differentiated on the basis of the occurrence of tuberculostearic acid), the genus , and the genus . Among the strains that produced iso-anteiso fatty acid patterns, one subgroup was affiliated with the “nicotianae” group of the genus ; however, some strains contained a new combination of chemical markers. Peptidoglycan type A4α, L-Lys-Gly-L-Glu was combined with menaquinones MK-7 and MK-8, whereas peptidoglycan type A4α, L-Lys-L-Glu occurred together with MK-8 and MK-9. The second subgroup was characterized by a new type B peptidoglycan and MK-11, as well as small amounts of MK-12. Differentiation that was based first on chemotaxonomy and second on physiology gave reliable results. Thus, coryneform strains with new characteristics were isolated from biofilters.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-42-3-474
1992-07-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/42/3/ijs-42-3-474.html?itemId=/content/journal/ijsem/10.1099/00207713-42-3-474&mimeType=html&fmt=ahah

References

  1. Becker B., Lechevalier M. P., Gordon R. E., Lechevalier H. A. 1964; Rapid differentiation between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolysates. Appl. Microbiol. 12:421–423
    [Google Scholar]
  2. Bendinger B. 1992 Ph.D. thesis University of Osnabück; Osnabrück, Germany:
  3. Bendinger B., Kroppenstedt R. M., Rijnaarts H., Van Langenhove H. R., Oberthiir R. C., Altendorf K. 1990 Studies on the microbiology and degradation capacities of a biofilter. 529–533 Behrens D., Krämer P.ed DECHEMA Biotechnology Conferences 4A VCH Verlagsgesellschaft; Weinheim, Germany:
    [Google Scholar]
  4. Bousfield I. J., Smith G. L., Dando T. R., Hobbs G. 1983; Numerical analysis of total fatty acid profiles in the identification of coryneform, nocardioform and some other bacteria. J. Gen. Microbiol. 129:375–394
    [Google Scholar]
  5. Brennan P. J. 1988 Mycobacterium and other actinomycetes. 203–298 Ratledge C., Wilkinson S. G.ed Microbial lipids 1 Academic Press; London:
    [Google Scholar]
  6. Collins M. D. 1982; Lipid composition of Agromyces ramosus (Gledhill and Casida). FEMS Microbiol. Lett. 14:187–189
    [Google Scholar]
  7. Collins M. D., Cummins C. S. 1986 Genus Corynebacterium Lehmann and Neumann 1986, 350AL. 1266–1276 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  8. Collins M. D., Goodfellow M., Minnikin D. E. 1979; Isoprenoid quinones in the classification of coryneform and related bacteria. J. Gen. Microbiol. 110:127–136
    [Google Scholar]
  9. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J. Appl. Bacteriol. 48:459–470
    [Google Scholar]
  10. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45:316–345
    [Google Scholar]
  11. Collins M. D., Jones D. 1981; Lipid composition of the entomopathogen Corynebacterium okanaganae (Liithy). FEMS Microbiol. Lett. 10:157–159
    [Google Scholar]
  12. Collins M. D., Jones D., Keddie R. M., Kroppenstedt R. M., Schleifer K. H. 1983; Classification of some coryneform bacteria in a new genus Aureobacterium. Syst. Appl. Microbiol. 4:236–252
    [Google Scholar]
  13. Collins M. D., Jones D., Kroppenstedt R. M. 1983; Reclassification of Brevibacterium imperiale (Steinhaus) and “Corynebacterium laevanifbrmans” (Dias and Bhat) in a redefined genus Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev. comb. nov. Syst. Appl. Microbiol. 4:65–78
    [Google Scholar]
  14. Collins M. D., Kroppenstedt R. M. 1983; Lipid composition as a guide to the classification of some coryneform bacteria containing an A4a type peptidoglycan (Schleifer and Kandier). Syst. Appl. Microbiol. 4:95–104
    [Google Scholar]
  15. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J. Gen. Microbiol. 100:221–230
    [Google Scholar]
  16. Collins M. D., Shah H. N., Minnikin D. E. 1980; A note on the separation of natural mixtures of bacterial menaquinones using reverse phase thin-layer chromatography. J. Appl. Bacteriol. 48:277–282
    [Google Scholar]
  17. Döpfer H., Stackebrandt E., Fiedler F. 1982; Nucleic acid hybridization studies on Microbacterium, Curtobacterium and related taxa. J. Gen. Microbiol. 128:1697–1708
    [Google Scholar]
  18. Fiedler F., Kandier O. 1973; Die Aminosäuresequenz von 2,4-Diaminobuttersäure enthaltenden Mureinen bei verschiedenen coiyneformen Bakterien und Agromyces ramosus. Arch. Mikrobiol. 89:51–66
    [Google Scholar]
  19. Grund E. 1987 Ph.D. thesis Technische Hochschule Darmstadt; Darmstadt, Germany:
  20. Henningson P. J., Gudmestad N. C. 1991; Fatty acid analysis of phytopathogenic coryneform bacteria. J. Gen. Microbiol. 137:427–440
    [Google Scholar]
  21. Hippchen B. 1985 Mikrobiologische Untersuchungen zur Eliminierung organischer Lösungsmittel im Biofilter. Stuttgarter Berichte zur Siedlungswasserwirtschaft 94 Oldenbourg-Verlag; Munich:
    [Google Scholar]
  22. Keddie R. M., Collins M. D., Jones D. 1986 Genus Arthrobacter Conn and Dimmick 1947, 300AL. 1288–1301 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  23. Klatte S. Unpublished data
  24. Kroppenstedt R. M. 1979; Chromatographische Identifizierung von Mikroorganismen dargestellt am Beispiel der Actino-myceten. Kontakte 2:12–21
    [Google Scholar]
  25. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. Soc. Appl. Bacteriol. Tech. Ser. 20:173–199
    [Google Scholar]
  26. Kroppenstedt R. M., Kutzner H. J. 1978; Biochemical taxonomy of some problem actinomycetes. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Grig. Suppl. 6:125–133
    [Google Scholar]
  27. Kroppenstedt R. M., Stackebrandt E., Goodfellow M. 1990; Taxonomic revision of the actinomycete genera Actinomadura and Microtetraspora. Syst. Appl. Microbiol. 13:148–160
    [Google Scholar]
  28. Lechevalier M. P. 1968; Identification of aerobic actinomycetes of clinical importance. J. Lab. Clin. Med. 71:934–944
    [Google Scholar]
  29. Lechevalier M. P., De Bievre C., Lechevalier H. A. 1977; Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem. Syst. Ecol. 5:249–260
    [Google Scholar]
  30. Lechevalier M. P., Horan A. C., Lechevalier H. A. 1971; Lipid composition in the classification of nocardiae and mycobacteria. J. Bacteriol. 105:313–318
    [Google Scholar]
  31. Lechevalier M. P., Lechevalier H. A. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int. J. Syst. Bacteriol. 20:435–444
    [Google Scholar]
  32. Lemmer H., Kroppenstedt R. M. 1984; Chemotaxonomy and physiology of some actinomycetes isolated from scumming activated sludge. Syst. Appl. Microbiol. 5:124–135
    [Google Scholar]
  33. Lipski A., Klatte S., Bendinger B., Altendorf K. 1992; Differentiation of gram-negative, nonfermentative bacteria isolated from biofilters on the basis of fatty acid composition, quinone system, and physiological reaction profiles. Appl. Environ. Microbiol. 58:2053–2065
    [Google Scholar]
  34. Minnikin D. E., Alshamaony L., Goodfellow M. 1975; Differentiation of Mycobacterium, Nocardia and related taxa by thin-layer chromatography analysis of whole cell organism methanolysates. J. Gen. Microbiol. 88:200–204
    [Google Scholar]
  35. Minnikin D. E., O’Donell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2:233–241
    [Google Scholar]
  36. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int. J. Syst. Bacteriol. 27:104–117
    [Google Scholar]
  37. Niebler E., Schleifer K. H., Kandler O. 1969; The amino acid sequence of the L-glutamic acid containing mureins of Micrococcus luteus and M. freudenreichii. Biochem. Biophys. Res. Commun. 34:560–568
    [Google Scholar]
  38. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36:402–477
    [Google Scholar]
  39. Seiler H. 1983; Identification key for coryneform bacteria derived by numerical taxonomic studies. J. Gen. Microbiol. 129:1433–1471
    [Google Scholar]
  40. Skerman V. B. D., McGowan V., Sneath P. H. A.ed 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30:225–240
    [Google Scholar]
  41. Stackebrandt E., Fowler V. J., Fiedler F., Seiler H. 1983; Taxonomic studies on Arthrobacter nicotianae and related taxa: description of Arthrobacter uratoxydans sp. nov. and Arthrobacter sulfureus sp. nov. and reclassification of Brevibacterium protophormiae as Arthrobacter protophormiae comb, nov.. Syst. Appl. Microbiol. 4:470–486
    [Google Scholar]
  42. Stackebrandt E., Schleifer K. H. 1984 Molecular systematics of actinomycetes and related organisms. 485–504 Ortiz-Ortiz L., Bojalil L. F., Jakoleff V.ed Biological, biochemical, and biomedical aspects of actinomycetes Academic Press; New York:
    [Google Scholar]
  43. Stackebrandt E., Smida J., Collins M. D. 1988; Evidence of phylogenetic heterogeneity within the genus Rhodococcus-. revival of the genus Gordona (Tsukamura). J. Gen. Appl. Microbiol. 34:341–348
    [Google Scholar]
  44. Stanek J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl. Microbiol. 28:226–231
    [Google Scholar]
  45. Suzuki K.-I., Komagata K. 1983; Taxonomic significance of cellular fatty acid composition in some coryneform bacteria. Int. J. Syst. Bacteriol. 33:188–200
    [Google Scholar]
  46. Uchida K., Aida K. 1977; Acyl type of bacterial cell wall: its simple identification by colorimetric method. J. Gen. Microbiol. 23:249–260
    [Google Scholar]
  47. Van Langenhove H. R., Van Wassenhove F. A., Coppin J. K., Van Acker M. R., Schamp N. M. 1982; Gas chromatogra-phy/mass spectrometry identification of organic volatiles contributing to rendering odors. Environ. Sci. Technol. 16:883–886
    [Google Scholar]
  48. Yamada Y., Inouye G., Tahara Y., Kondo K. 1976; The menaquinone system in the classification of coryneform and nocardioform bacteria and related organisms. J. Gen. Appl. Microbiol. 22:203–214
    [Google Scholar]
  49. Yamada Y., Inouye G., Tahara Y., Kondo K. 1976; The menaquinone system in the classification of aerobic Grampositive cocci in the genera Micrococcus, Staphylococcus, Pianococcus and Sporosarcina. J. Gen. Appl. Microbiol. 22:227–236
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-42-3-474
Loading
/content/journal/ijsem/10.1099/00207713-42-3-474
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error