1887

Abstract

A strictly anaerobic, gram-negative bacterium was isolated from rice field soils by using lactate as a sole carbon and energy source. The cells were non-spore-forming, motile, curved rods. Optimal growth occurred at 35°C and pH 6.8. No NaCl requirement was observed. Vitamins were required for growth. Our isolate, strain BB (T = type strain), fermented pyruvate, fumarate, malate, citrate, dihydroxyacetone, fructose, 1,2-propanediol, glutamate, and aspartate to acetate, propionate, succinate, and traces of hydrogen. Strain BB did not use ribose or glycerol as an energy source, although glycerol degradation produced mainly 1,3-propanediol. Ferric iron was facultatively reduced. Nitrate and sulfate were not reduced. Cytochrome was present. The guanine-plus-cytosine content of the DNA was 44.1 ± 0.1 mol%. We propose that strain BB (= DSM 6283) should be the type strain of a new species in the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-42-3-390
1992-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/42/3/ijs-42-3-390.html?itemId=/content/journal/ijsem/10.1099/00207713-42-3-390&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magnum L. J., Wolfe R. S. 1979; Methanogens: réévaluation of a unique biological group. Microbiol. Rev. 43:260–296
    [Google Scholar]
  2. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32:781–791
    [Google Scholar]
  3. Bryant M. P. 1984 Genus IX. Selenomonas. 650–653 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem. 81:461–466
    [Google Scholar]
  5. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfatereducing bacteria. J. Microbiol. Methods 4:33–36
    [Google Scholar]
  6. De Vries W., van Wijck-Kapteyn W. M. C., Oosterhuis S. K. H. 1974; The presence and function of cytochromes in Selenomonas ruminantium, Anaerovibrio lipolytica and Veillonella alcalescens. J. Gen. Microbiol. 81:69–78
    [Google Scholar]
  7. De Vries W., van Wijck-Kapteyn W. M. C., Stoutahamer A. H. 1973; Generation of ATP during cytochrome-linked anaerobic electron transport in propionic bacteria. J. Gen. Microbiol. 76:31–41
    [Google Scholar]
  8. Dubourguier H. C., Samain E., Prensier G., Albagnac G. 1986; Characterization of two strains of Pelobacter carbinolicus isolated from anaerobic digesters. Arch. Microbiol. 145:248–253
    [Google Scholar]
  9. Forage R. G., Foster M. A. 1982; Glycerol fermentation in Klebsiella pneumoniae, functions of the coenzyme B12-dependent glycerol and diol dehydratases. J. Bacteriol. 149:413–419
    [Google Scholar]
  10. Forsberg C. W. 1987; Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species. Appl. Environ. Microbiol. 53:639–643
    [Google Scholar]
  11. Ghiorse W. C. 1988 Microbial reduction of manganese and iron. 305–331 Zehnder A. J. B.ed Biology of anaerobic microorganisms John Wiley; New York:
    [Google Scholar]
  12. Hansen T. A. 1988; Physiology of sulfate-reducing bacteria. Microbiol. Sci. 5:81–84
    [Google Scholar]
  13. Heyndrickx M., De Vos P., Vancanneyt M., De Ley J. 1991; The fermentation of glycerol by Clostridium butyricum LMG 1212t2 and 1213tx and C. pasteurianum LMG 3285. Appl. Microbiol. Biotechnol. 34:637–642
    [Google Scholar]
  14. Hobson P. N., Mann S. O. 1961; The isolation of glycerolfermenting and lipolytic bacteria from the rumen of sheep. J. Gen. Microbiol. 25:227–240
    [Google Scholar]
  15. Hungate R. E. 1966 The rumen and its microbes. Academic Press; New York:
    [Google Scholar]
  16. Hungate R. E. 1969; A roll tube method for the cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  17. Imhoff-Stuckle D., Pfennig N. 1983; Isolation and characterization of nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch. Microbiol. 136:194–198
    [Google Scholar]
  18. Jacq V. A. 1989 Ph.D. thesis University of Provence; Marseille, France:
  19. Jones J. G., Davison W., Gardener S. 1984; Iron reduction by bacteria: range of organisms involved and metals reduced. FEMS Microbiol. Lett. 21:133–136
    [Google Scholar]
  20. Labat M., Garcia J. L. 1986; Study of the development of methanogenic microflora during anaerobic digestion of sugar beet pulp. Appl. Microbiol. Biotechnol. 25:163–168
    [Google Scholar]
  21. Lee S. Y. 1984 Genus XL Pectinanus. 657–658 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  22. LeGall J., Fauque G. 1988 Dissimilatoiy reduction of sulfur compounds. 587–639 Zehnder A. J. B.ed Biology of anaerobic microorganisms John Wiley; New York:
    [Google Scholar]
  23. Lovley D. R. 1987; Organic matter mineralization with the reduction of ferric iron: a review. Geomicrobiol. J. 5:375–399
    [Google Scholar]
  24. Lovley D. R., Lonergan D. J. 1990; Anaerobic oxidation of toluene, phenol, andp-cresol by the dissimilatory iron-reducing organism, GS-15. Appl. Environ. Microbiol. 56:1858–1864
    [Google Scholar]
  25. Lovley D. R., Phillips E. J. P. 1986; Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51:683–689
    [Google Scholar]
  26. Lovley D. R., Phillips E. J. P. 1988; Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54:1472–1480
    [Google Scholar]
  27. Lovley D. R., Phillips E. J. P., Lonergan D. J. 1989; Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl. Environ. Microbiol. 55:700–706
    [Google Scholar]
  28. Macy J. M., Snellen J. E., Hungate R. E. 1972; Use of syringe methods for anaerobiosis. Am. J. Clin. Nutr. 25:1318–1323
    [Google Scholar]
  29. Meshbah M., Premachandran U., Withman W. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  30. Miller T. L., Wolin M. J. 1974; A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 27:985–987
    [Google Scholar]
  31. Oppenberg B., Schink B. 1989; Anaerobic degradation of 1,3-propanediol by sulfate-reducing bacteria. Antonie van Leeuwenhoek 57:205–213
    [Google Scholar]
  32. Pfennig N., Widdel F., Triiper H. G. 1981 The dissimilatory sulfate-reducing bacteria. 926–940 Starr M. P., Stolp H., Triiper H. G., Balows A., Schlegel H. G.ed The prokaryotes 1 Springer-Verlag KG; Berlin:
    [Google Scholar]
  33. Ponnamperuma F. N. 1972; The chemistry of submerged soils. Adv. Agron. 24:29–96
    [Google Scholar]
  34. Postgate J. R. 1984 The sulphate-reducing bacteria. Cambridge University Press; Cambridge:
    [Google Scholar]
  35. Prade K. 1987 Ph.D. thesis University of Hohenheim; Stuttgart-Hohenheim, Germany:
  36. Prins R. A. 1984 Genus K. Anaerovibrio. 653–655 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  37. Prins R. A., Lankhorst A., van der Meer P., van Nevel C. J. 1975; Some characteristics of Anaerovibrio lipolytica, a rumen lipolytic organism. Antonie van Leeuwenhoek J. Microbiol. Serol. 41:1–11
    [Google Scholar]
  38. Qatibi A. I., Cayol J. L., Garcia J. L. 1991; Glycerol and propanediols degradation by Desulfovibrio alcoholovorans in pure culture in presence of sulfate, or in syntrophic association with Methanospirillum hungatei. FEMS Microbiol. Ecol. 85:233–240
    [Google Scholar]
  39. Schauder R., Schink B. 1989; Anaerovibrio glycerini sp., an anaerobic bacterium fermenting glycerol to propionate, cell matter, and hydrogen. Arch. Microbiol. 152:473–478
    [Google Scholar]
  40. Schink B., Stieb M. 1983; Fermentative degradation of polyethylene glycol by a new, strictly anaerobic, gram-negative, non-sporeforming bacterium, Pelobacter venetianus sp. nov. Appl. Environ. Microbiol. 45:1905–1913
    [Google Scholar]
  41. Schink B., Thompson T. E., Zeikus J. G. 1982; Characterization of Propionispira arboris gen. nov. sp. nov., a nitrogenfixing anaerobe common to wetwoods of living trees. J. Gen. Microbiol. 128:2771–2780
    [Google Scholar]
  42. Schütz H., Rader F. 1984; Anaerobic reduction of glycerol to propanediol-1,3 by Lactobacillus brevis and Lactobacillus buchneri. Syst. Appl. Microbiol. 5:169–178
    [Google Scholar]
  43. Stieb M., Schink B. 1984; A new 3-hydroxybutyrate-fermenting anaerobe, Ilyobacter polytropus, gen. nov., sp. nov., possessing various fermentation pathways. Arch. Microbiol. 140:139–146
    [Google Scholar]
  44. Streekstra H., Teixeira de Mattos M. J., Neijssel O., Tempest D. W. 1987; Overflow metabolism during anaerobic growth of Klebsiella aerogenes NCTC 418 on glycerol and dihydroxyacetone in chemostat culture. Arch. Microbiol. 147:268–275
    [Google Scholar]
  45. Van Breeman N. 1988 Effects of seasonal redox processes involving iron on the chemistry of periodically reduced soils. 797–809 Stucki J. W., Goodman B. A., Schwertmann U.ed Iron in soils and clay minerals D. Reidel Publishing Co.; Boston:
    [Google Scholar]
  46. Widdel F. 1988 Microbiology and ecology of sulfate- and sulfur-reducing bacteria. 469–585 Zehnder A. J. B.ed Biology of anaerobic microorganisms John Wiley; New York:
    [Google Scholar]
  47. Widdel F., Pfennig N. 1984 Dissimilatory sulfate- or sulfur-reducing bacteria. 663–679 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-42-3-390
Loading
/content/journal/ijsem/10.1099/00207713-42-3-390
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error