1887

Abstract

Approximately 500 fatty acid profiles were prepared for 340 strains of plant-pathogenic and other bacteria currently or recently classified in the genus Migula 1984. Strains representing some infraspecific taxa were included. The fatty acid profiles were stable and reproducible provided that cultural and chemical techniques were standardized. The 2- and 3-hydroxy fatty acids were found to be useful in grouping strains into six major groups, several of which were further differentiated into subgroups. Group 1 contained strains of the following species and subspecies: , and (subgroup 1a); (subgroup 1b); (subgroup 1c); subsp. , and (subgroup 1d); (subgroup le); and NCPPB 1874 (subgroup 1f). All group 1 strains contained 10:0 3-OH and 12:0 3-OH, and most group 1 strains also contained 12:0 2-OH. Group 2 contained strains belonging to the following taxa: , and (in part) (subgroup 2a); (in part) (subgroup 2b); and , and the banana blood disease bacterium (subgroup 2c). All of the group 2 strains contained 14:0 3-OH, 16:0 3-OH, and 18:1 2-OH; most also contained 16:1 2-OH and 16:0 2-OH. Group 3 contained strains belonging to the following taxa: subsp. subsp. (subgroup 3a); and (subgroup 3b). All of the group 3 strains contained 10:0 3-OH. The group 4 strains were members of , and all contained only 14:0 2-OH. The group 5 strains were members of and contained 12:0 2-OH, 14:0 2-OH, and 14:0 3-OH. The group 6 strains were , and pv. campestris strains, and all contained 12:0 3-OH, 11:0 iso 3-OH, and 13:0 iso 3-OH. Within each group or subgroup, qualitative and quantitative differences in profiles occurred for most species. Differences were also found at the infraspecific level for some taxa. My results support genomic and other data which show that the plant-pathogenic and other pseudomonads tested should be placed in at least six genera.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-42-2-281
1992-04-01
2022-05-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/42/2/ijs-42-2-281.html?itemId=/content/journal/ijsem/10.1099/00207713-42-2-281&mimeType=html&fmt=ahah

References

  1. Bradbury J. F. 1987 Guide to plant pathogenic bacteria. Commonwealth Agricultural Bureaux. International Mycological Institute; Wallingford, United Kingdom:
    [Google Scholar]
  2. Byng G. S., Whitaker R. J., Gherna R. L., Jensen R. A. 1980; Variable enzymological patterning in tyrosine biosynthesis as a means of determining natural relatedness among the Pseudomonadaceae. J. Bacteriol. 144:247–257
    [Google Scholar]
  3. Claflin L. E., Ramundo B. A. 1987; Synonymy of Pseudomonas avenae Manns 1905, and Pseudomonas rubrilineans Lee et al. 1925. Phytopathology 77:1766
    [Google Scholar]
  4. De Vos P., De Ley J. 1983; Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 33:487–509
    [Google Scholar]
  5. De Vos P., Goor M., Gillis M., De Ley J. 1985; Ribosomal ribonucleic acid cistron similarities of phytopathogenic Pseudomonas species. Int. J. Syst. Bacteriol. 35:169–184
    [Google Scholar]
  6. De Vos P., Kersters K., Falsen E., Pot B., Gillis M., Segers P., De Ley J. 1985; Comamonas Davis and Park 1962 gen. nov. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int. J. Syst. Bacteriol. 35:443–453
    [Google Scholar]
  7. De Vos P., Van Landschoot A., Seghers P., Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B., Kersters K., Lizzaraga P., De Ley J. 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-WYc strains by deoxy-ribonucleic acid-ribosomal ribonucleic acid hybridizations. Int. J. Syst. Bacteriol. 39:35–49
    [Google Scholar]
  8. Ikemoto S., Kuraishi H., Komagata K., Ajuma R., Suto T., Murooka H. 1978; Cellular fatty acid composition in Pseudomonas species. J. Gen. Appl. Microbiol. 24:199–213
    [Google Scholar]
  9. Moss C. W. 1981; Gas-liquid chromatography as an analytical tool in microbiology. J. Chromatogr. 203:337–347
    [Google Scholar]
  10. Moss C. W., Dees S. B., Guerrant G. O. 1980; Gas-liquid chromatography of bacterial fatty acids with a fused-silica capillary column. J. Clin. Microbiol. 12:127–130
    [Google Scholar]
  11. Moss C. W., Lambert M. A., Mervin W. H. 1974; Comparison of rapid methods for analysis of bacterial fatty acids. Appl. Microbiol. 28:80–85
    [Google Scholar]
  12. Moss C. W., Samuels S. B., Liddle J., McKinney R. M. 1973; Occurrence of branched-chain hydroxy fatty acids in Pseudomonas maltophilia. J. Bacteriol. 114:1018–1024
    [Google Scholar]
  13. Moss C. W., Samuels S. B., Weaver R. E. 1972; Cellular fatty acid composition of selected Pseudomonas species. Appl. Microbiol. 24:596–598
    [Google Scholar]
  14. Nishiyama K., Kusaba T., Ohta K., Nahata K., Ezuka A. 1979; Bacterial black spot of tulip caused by Pseudomonas andropogonis. Ann. Phytopathol. Soc. Jpn. 45:668–674
    [Google Scholar]
  15. Owen R. J., Jackman P. J. H. 1982; The similarities between Pseudomonas paucimobilis and allied bacteria derived from analysis of deoxyribonucleic acids and electrophoretic protein patterns. J. Gen. Microbiol. 128:2945–2954
    [Google Scholar]
  16. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J. Gen. Appl. Microbiol. 29:17–40
    [Google Scholar]
  17. Palleroni N. J. 1984 Genus I. Pseudomonas,. 141–199 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  18. Palleroni N. J., Ballard R. W., Ralston E., Doudoroff M. 1972; Deoxyribonucleic acid homologies among some Pseudomonas species. J. Bacteriol. 110:1–11
    [Google Scholar]
  19. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff N. 1973; Nucleic acid homologies in the genus Pseudomonas. Int. J. Syst. Bacteriol. 23:333–339
    [Google Scholar]
  20. Ramundo B. A., Claflin L. E. 1990; Demonstration of synonymy between the plant pathogens Pseudomonas avenae and Pseudomonas rubrilineans. J. Gen. Microbiol. 136:2029–2033
    [Google Scholar]
  21. Ratledge C., Wilkinson S. G.ed 1988 Microbial lipids 1 Academic Press; London:
    [Google Scholar]
  22. Roberts S. J., Eden-Green S. J., Jones P., Ambler D. J. 1990; Pseudomonas syzygii sp. nov., the cause of Sumatra disease of cloves. Syst. Appl. Microbiol. 13:34–43
    [Google Scholar]
  23. Roy M. A. 1988; Use of fatty acids for the identification of phytopathogenic bacteria. Plant Dis. 72:460
    [Google Scholar]
  24. Sasser M., Smith D. H. 1987 Parallels between ribosomal RNA and DNA homologies and fatty acid composition in Pseudomonas,. 241 Abstr. 87th Annu. Meet. Am. Soc. Microbiol 1987 American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  25. Skerman V. B. D., McGowan V., Sneath P. H. A.ed 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30:225–420
    [Google Scholar]
  26. Stead D. E. 1988; Identification of bacteria by computer-assisted fatty acid profiling. Acta Hortic. (The Hague) 225:3946
    [Google Scholar]
  27. Stead D. E. 1989; Grouping of Xanthomonas campestris pathovars of cereals and grasses by fatty acid profiling. EPPO (Eur. Mediterr. Plant Prot. Organ.) Bull. 19:57–68
    [Google Scholar]
  28. Stead D. E. Techniques for detecting and identifying plant pathogenic bacteria. Duncan J. M., Torrance L.ed Techniques for the rapid detection of plant pathogens in press Blackwell Scientific Publications; Oxford:
    [Google Scholar]
  29. Swings J., De Vos P., Van den Mooter M., De Ley J. 1983; Transfer of Pseudomonas maltophilia Hugh 1981 to the genus Xanthomonas as Xanthomonas maltophilia (Hugh 1981) comb, nov. Int. J. Syst. Bacteriol. 33:409–413
    [Google Scholar]
  30. Tamaoka J., Ha D. M., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1928 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb, nov., with an amended description of the genus Comamonas. Int. J. Syst. Bacteriol. 37:52–59
    [Google Scholar]
  31. Van Bruggen A. H. C., Jochimsen K. N., Brown P. R. 1990; Rhizomonas suberifaciens gen. nov., sp. nov., the causal agent of corky root of lettuce. Int. J. Syst. Bacteriol. 40:175–188
    [Google Scholar]
  32. Whitaker R. J., Byng G. S., Gherna R. L., Jensen R. A. 1981; Comparative allostery of 3-deoxy-D-arabino-heptu-losonate-7-phosphate synthetase as an indicator of taxonomic relatedness in pseudomonad genera. J. Bacteriol. 145:752–759
    [Google Scholar]
  33. Willems A., De Ley J., Gillis M., Kersters K. 1991; Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovarax paradoxus gen. nov., comb, nov., for Alcaligenes paradoxus (Davis 1969). Int. J. Syst. Bacteriol. 41:445–450
    [Google Scholar]
  34. Willems A., Pot B., Falsen E., Vandamme P., Gillis M., Kersters K., De Ley J. 1991; Polyphasic taxonomic study of the emended genus Comamonas: relationship to Aquaspirillum aquaticum, E. Falsen group 10, and other clinical isolates. Int. J. Syst. Bacteriol. 41:427–444
    [Google Scholar]
  35. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb, nov., Sphingomonasparapaucimobilis sp. nov., Sphingomonas capsulata comb, nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol. 34:99–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-42-2-281
Loading
/content/journal/ijsem/10.1099/00207713-42-2-281
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error