1887

Abstract

We studied the taxonomic positions of the rapidly growing organism and phenotypically related organisms. We confirmed that “Mycobacterium peregrinum” ATCC 14467 (T = type strain) is genetically independent of M. fortuitum ATCC 6841 by using various DNA hybridization conditions. Strains that were genetically identified as “M. peregrinum” were phenotypically differentiated from M. fortuitum ATCC 6841. Thus, we propose that “M. peregrinum” should be revived as an independent species, Mycobacterium peregrinum sp. nov., nom. rev. The type strain is strain ATCC 14467. M. fortuitum subsp. acetamidolyticum ATCC 35931 exhibited a high level of DNA relatedness to M. fortuitum ATCC 6841 The hybridized DNAs maintained stable heteroduplexity at high stringency; thus, we confirmed that M. fortuitum subsp. acetamidolyticum is identical to M. fortuitum ATCC 6841 We found that A/, chelonae subsp. abscessus ATCC 19977 is genetically different from M. chelonae subsp. chelonae NCTC 946on the basis of the results of quantitative hybridization even under optimal conditions. There was no reason to maintain this organism as a subspecies of M. chelonae. Thus, we propose that M. chelonae subsp. abscessus should be elevated to species status as Mycobacterium abscessus (Kubica et al.) comb. nov. The type strain is strain ATCC 19977.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-42-2-240
1992-04-01
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/42/2/ijs-42-2-240.html?itemId=/content/journal/ijsem/10.1099/00207713-42-2-240&mimeType=html&fmt=ahah

References

  1. Baess I. 1982; Deoxyribonucleic acid relatedness among species of rapidly growing mycobacteria. Acta Pathol. Microbiol. Immunol. Scand. Sect. B 90:371–375
    [Google Scholar]
  2. Bojalil L. F., Cerbon J., Trujillo A. 1962; Adansonian classification of mycobacteriea. J. Gen. Microbiol. 28:333–346
    [Google Scholar]
  3. Bonicke R. 1962; L’dentification des mycobactéries â laide méthodes biochemiques. Bull. Union Int. Tuberculose 32:1376
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39:224–229
    [Google Scholar]
  5. Imaeda T., Broslawski G., Imaeda S. 1988; Genomic relatedness among mycobacterial species by nonisotopic blot hybridization. Int. J. Syst. Bacteriol. 38:151–156
    [Google Scholar]
  6. Japanese Commitee on the Taxonomy of Mycobacterium. 1976; Differentiation and identification of Mycobacterium species isolated from human clinical specimens. Kekkaku 51:247–256 In Japanese
    [Google Scholar]
  7. Johnson J. L. 1984 Nucleic acids in bacterial classification. 8–11 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  8. Jones W. D., Kubica G. P. 1964; The use of MacConkey’s agar for differential typing of Mycobacterium fortuitum.. Am. J. Med. Technol. 30:187–195
    [Google Scholar]
  9. Kestle D. G., Abott V. D., Kubica G. P. 1967; Differential identification of mycobacteria. II. Subgroups of group II and III (Runyon) with different clinical significance. Am. Rev. Respir. Dis. 95:1041–1052
    [Google Scholar]
  10. Kubica G. P., Baess I., Gordon R. E., Jenkins P. A., Kwapinski J. B. G., McDurmont C., Pattyn S. R., Saito H., Silcox V., Stanford J. L., Takeya K., Tsukamura M. 1972; A cooperative analysis of rapidly growing mycobacteria. J. Gen. Microbiol. 73:55–70
    [Google Scholar]
  11. Kusunoki S., Ezaki T., Tamesada M., Hatanaka Y., Asano K., Hashimoto Y., Yabuuchi E. 1991; Application of colorimetric microdilution plate hybridization for rapid genetic identification of 22 Mycobacterium species. J. Clin. Microbiol. 29:1596–1603
    [Google Scholar]
  12. Levy-Frebault V., Grimont F., Grimont P. A. D., David H. L. 1986; Deoxyribonucleic acid relatedness study of the Mycobacterium fortuitum-Mycobacterium chelonae complex. Int. J. Syst. Bacteriol. 36:458–460
    [Google Scholar]
  13. Marmur J., Doty P. 1962; Determination of the base composition of DNA from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  14. Minnikin D. E., Minnikin S. M., Hutchinson I. G., Goodfellow M., Grange J. M. 1984; Mycolic acid pattern of representative strains of Mycobacterium fortuitum, “Mycobacterium peregrinum,”’ and Mycobacterium smegmatis.. J. Gen. Microbiol. 130:363–367
    [Google Scholar]
  15. Pattyn S. R., Magnusson M., Stanford J. L., Grange J. M. 1974; A study of Mycobacterium fortuitum (ranae).. J. Med. Microbiol. 7:67–76
    [Google Scholar]
  16. Saito H., Asano K., Takakura T. 1982; Development of an identification kit for mycobacteria. Rinsho Kensa. 26:1539–1544 (In Japanese.)
    [Google Scholar]
  17. Skerman V. B. D., McGowan V., Sneath P. H. A.ed 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30:225–420
    [Google Scholar]
  18. Stanford J. T., Gunthorpe W. J. 1969; Serological and bacteriological investigation of Mycobacterium ranae (fortuitum). J. Bacteriol. 98:375–383
    [Google Scholar]
  19. Tsang A. Y., Barr V. L., McClatchy J. K., Goldberg M., Drupa I., Brennan P. J. 1984; Antigenic relationship of the Mycobacterium fortuitum-M. chelonae complex. Int. J. Syst. Bacteriol. 34:35–44
    [Google Scholar]
  20. Tsukamura M. 1965; Differentiation of mycobacteria by susceptibility to hydroxylamine and 8-azaguanune. J. Bacteriol. 90:556–557
    [Google Scholar]
  21. Tsukamura M. 1967; Identification of mycobacteria. Tubercle 48:311–339
    [Google Scholar]
  22. Tsukamura M. 1968; Relationship between growth rate of mycobacteria and their ability to utilize organic acids as the sole source of carbon. Jpn. J. Microbiol. 12:534–536
    [Google Scholar]
  23. Tsukamura M., Yano I., Imaeda T. 1986; Mycobacterium fortuitum subspecies acetamidolyticum, a new subspecies of Mycobacterium fortuitum. Microbiol. Immunol. 30:97–110
    [Google Scholar]
  24. Wallace R. J. Jr., Nash D. R., Udou T., Steingrube V. A., Steele L. C., Swenson J. M., Silcox V. A. 1985; Isoelectric focusing of beta-lactamase in Mycobacterium fortuitum. Assosiation of a single enzyme pattern with cefoxitin resistance. Am. Rev. Respir. Dis. 132:1093–1097
    [Google Scholar]
  25. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandier O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Trüper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  26. Wayne L. G., Doubek J. R. 1968; Diagnostic key to mycobacteria encountered in clinical laboratories. Appl. Microbiol. 16:925–931
    [Google Scholar]
  27. Wayne L. G., Kubica G. P. 1986 The mycobacteria. 1435–1457 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-42-2-240
Loading
/content/journal/ijsem/10.1099/00207713-42-2-240
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error