1887

Abstract

Nineteen gram-negative, aerobic, biodegradative isolates were identified by using a polyphasic taxonomic approach. The presence of the specific polyamine 2-hydroxyputrescine and the presence of a ubiquinone with eight isoprenoid units in the side chain (ubiquinone Q-8) allowed allocation of these organisms to the beta subclass of the . On the basis of the results of additional characterization experiments (i.e., API 20NE tests, determinations of soluble protein patterns, and DNA-DNA hybridization experiments), we classified six isolates as either , or subsp. . By using the same criteria we allocated two additional isolates to the genus . A comparison of a 16S rRNA fragment (positions 1220 to 1377; nomenclature) indicated that the remaining isolates should be allocated as follows: One is a member of and one is a member of , as confirmed by the results of additional DNA-DNA hybridizations; two others probably belong to the family ; six are related to “”; and one, strain NRRL 12228, occupies an isolated position.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-42-1-19
1992-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/42/1/ijs-42-1-19.html?itemId=/content/journal/ijsem/10.1099/00207713-42-1-19&mimeType=html&fmt=ahah

References

  1. Andreoni V., Bestetti G. 1986; Comparative analysis of different Pseudomonas strains that degrade cinnamic acid. Appl. Environ. Microbiol. 52:930–934
    [Google Scholar]
  2. Auling G., Busse H.-J., Pilz F., Webb L., Kneifel H., Claus D. 1991; Rapid differentiation, by polyamine analysis, of Xanthomonas strains from phytopathogenic pseudomonads and other members of the class Proteobacteria interacting with plants. Int. J. Syst. Bacteriol. 41:223–228
    [Google Scholar]
  3. Auling G., Probst A., Kroppenstedt R. M. 1986; Chemo- and molecular taxonomy of D-(-)-tartrate-utilizing pseudomonads. Syst. Appl. Microbiol. 8:114–120
    [Google Scholar]
  4. Brilon K., Beckmann W., Knackmuss H.-J. 1981; Catabolism of naphthalenesulfonic acids by Pseudomonas sp. A3 and Pseudomonas sp. C22. Appl. Environ. Microbiol. 42:44–55
    [Google Scholar]
  5. Brosius J., Palmer H. L., Kennedy J. P., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  6. Bruhn C., Lenke H., Knackmuss H.-J. 1987; Nitrosubstituted aromatic compounds as nitrogen sources for bacteria. Appl. Environ. Microbiol. 53:208–210
    [Google Scholar]
  7. Busse H.-J. 1989 Ph.D. thesis University of Hannover, Hannover; Federal Republic of Germany:
  8. Busse H.-J., Auling G. The genus Alcaligenes. Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes. A handbook on the biology of bacteria—ecophysiology, isolation, identification, application, 2nd. in press Springer-Verlag; New York:
    [Google Scholar]
  9. Busse H.-J., Auling G. Unpublished data
  10. Busse H.-J., EI-Banna T., Auling G. 1989; Evaluation of different approaches for identification of xenobiotic-degrading pseudomonads. Appl. Environ. Microbiol. 55:1578–1583
    [Google Scholar]
  11. Busse J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst. Appl. Microbiol. 11:1–8
    [Google Scholar]
  12. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45:316–354
    [Google Scholar]
  13. Cook A. M., Daughton C. G., Alexander M. 1978; Phos phorus-containing pesticide breakdown products: quantitative utilization as phosphorus sources by bacteria. Appl. Environ. Microbiol. 36:668–672
    [Google Scholar]
  14. Cook A. M., Hutter R. 1981; s-Triazines as nitrogen sources for bacteria. J. Agric. Food Chern. 29:1135–1143
    [Google Scholar]
  15. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101:738–754
    [Google Scholar]
  16. De Ley J. 1984 DNA:rRNA hybridizations in bacterial taxonomy. 3–9 Sanna A., Morace G.ed Proceedings of the European Symposium on New Horizons in Microbiology Elsevier Science Publishers B.V.; Amsterdam:
    [Google Scholar]
  17. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  18. De Ley J., Segers P., Kersters K., Mannheim W., Lievens A. 1986; Intra- and intergeneric similarities of the Bordetella ribosomal ribonucleic acid cistrons: proposal for a new family, Alcaligenaceae. Int. J. Syst. Bacteriol. 36:405–414
    [Google Scholar]
  19. De Vos P., De Ley J. 1983; Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 33:487–509
    [Google Scholar]
  20. De Vos P., Goor M., Gillis M., De Ley J. 1985; Ribosomal ribonucleic acid cistron similarities of phytopathogenic Pseudomonas species. Int. J. Syst. Bacteriol. 35:169–184
    [Google Scholar]
  21. De Vos P., Kersters K., Falsen E., Pot B., Gillis M., Segers P., De Ley J. 1985; Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int. J. Syst. Bacteriol. 35:443–453
    [Google Scholar]
  22. De Vos P., Van Landschoot A., Segers P., Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B., Kersters K., Lizzaraga P., De Ley J. 1989; Genotypic relationship and taxonomic localization of unclassified Pseudomonas and Pseudomonas-iike strains by deoxyribonucleic acid-ribosomal ribonucleic acid hybridizations. Int. J. Syst. Bacteriol. 39:35–49
    [Google Scholar]
  23. Dewhirst F. E., Paster B. F., Bright P. L. 1989; Chromobacterium, Eikenella, Kingella, Neisseria, Simonsiella, and Vitreoscilla species comprise a major branch of the beta group of Proteobacteria by 16S ribosomal ribonucleic acid sequence comparison: transfer of Eikenella and Simonsiella to the family Neisseriaceae (emend.). Int. J. Syst. Bacteriol. 39:258–266
    [Google Scholar]
  24. El-Banna T. 1989; Ph.D. thesis. Tanta University; Tanta, Egypt:
    [Google Scholar]
  25. Fletcher M. T., Blackall P. J., Doheny C. M. 1987; A note on the isoprenoid quinone content of Bordetella avium and related species. J. Appl. Bacteriol. 62:275–277
    [Google Scholar]
  26. Gavini F., Holmes B., Izard D., Beji A., Bernigaud A., Jakubczak E. 1989; Numerical taxonomy of Pseudomonas alcaligenes, P. pseudoalcaligenes, P. mendocina, P. stutzeri, and related bacteria. Int. J. Syst. Bacteriol. 39:135–144
    [Google Scholar]
  27. Haggblom M. M., Apajalahti J. H. A., Salkinoja-Salonen M. S. 1988; Hydroxylation and dechlorination of chlorinated guaiacols and syringols by Rhodococcus chlorophenolicus. Appl. Environ. Microbiol. 54:683–687
    [Google Scholar]
  28. Haggblom M. M., Nohynek L. J., Salkinoja-Salonen M. S. 1988; Degradation and o-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl. Environ. Microbiol. 54:3043–3052
    [Google Scholar]
  29. Hamana K., Kamekura M., Onishi H., Akazawa T., Matsuzaki S. 1985; Polyamines in photosynthetic eubacteria and extreme-halophilic archaebacteria. J. Biochem. 97:1653–1658
    [Google Scholar]
  30. Hamana K., Matsuzaki S., Niitsu M., Samejima K. 1989; Polyamine distribution and the potential to form novel polyamines in phytopathogenic agrobacteria. FEMS Microbiol. Lett. 65:269–274
    [Google Scholar]
  31. Hamana K., Matsuzaki S., Sakakibara M. 1988; Distribution of syzn-homospermidine in eubacteria, cyanobacteria, algae and fems. FEMS Microbiol. Lett. 50:11–16
    [Google Scholar]
  32. Hiraishi A., Hoshino Y., Kitamura H. 1984; Isoprenoid quinone composition in the classification of Rhodospirillaceae. J. Gen. Appl. Microbiol. 30:187–210
    [Google Scholar]
  33. Imhoff J. F. 1984; Quinones of phototrophic bacteria. FEMS Microbiol. Lett. 25:85–89
    [Google Scholar]
  34. Jahnke M., Ei-Banna T., Klintworth R., Auling G. 1990; Mineralization of orthanilic acid is a plasmid-associated trait in Alcaligenes sp. O-l. J. Gen. Microbiol. 136:2241–2249
    [Google Scholar]
  35. Jenni B., Realini L., Aragno M., Tamer A. U. 1988; Taxonomy of non-H2-lithotrophic, oxalate-oxidizing bacteria related to Alcaligenes eutrophus. Syst. Appl. Microbiol. 10:126–133
    [Google Scholar]
  36. Johnson J. L. 1984 Bacterial classification. III. Nucleic acids in bacterial classification. 8–11 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  37. Kakii K., Yamaguchi H., Iguchi Y., Teshima M., Shirakashi T., Kuriyama M. 1986; Isolation and growth characteristics of nitrilotriacetate-degrading bacteria. J. Ferment. Technol. 64:103–108
    [Google Scholar]
  38. Katayama-Fujimura Y., Tzuzaki N., Kuraishi H. 1982; Ubiquinone, fatty acid and DNA base composition determination as a guide to the taxonomy of the genus Thiobacillus. J. Gen. Microbiol. 128:1599–1611
    [Google Scholar]
  39. Kersters K., De Ley J. 1984 Genus Alcaligenes Castellani and Chalmers 1919, 936AL. 361–373 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  40. Kiredjian M., Holmes B., Kersters K., Guilvout I., De Ley J. 1986; Alcaligenes piechaudii, a new species from human clinical specimens and the environment. Int. J. Syst. Bacteriol. 36:282–287
    [Google Scholar]
  41. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  42. Macario A. J. L., Conway de Macario E. 1990 Gene probes for bacteria. Academic Press, Inc.; New York:
    [Google Scholar]
  43. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y:
    [Google Scholar]
  44. Martens B., Spiegl H., Stackebrandt E. 1987; Sequence of a 16S ribosomal RNA gene of Ruminobacter amylophilus: the relation between homology values and similarity coefficients. Syst. Appl. Microbiol. 9:224–230
    [Google Scholar]
  45. Moule A. L., Wilkinson S. G. 1987; Polar lipids, fatty acids, and isoprenoid quinones of Alteromonas putrefaciens (Shewanella putrefaciens). Syst. Appl. Microbiol. 9:192–198
    [Google Scholar]
  46. Murray R. G. E., Brenner D. J., Colwell R. R., De Vos P., Goodfellow M., Grimont P. A. D., Pfenning N., Stackebrandt E., Zavarzin G. A. 1990; Report of the Ad Hoc Committee on Approaches to Taxonomy within the Proteobacteria. Int. J. Syst. Bacteriol. 40:213–215
    [Google Scholar]
  47. Nbrtemann B., Baumgarten J., Rast H. G., Knackmuss H. J. 1986; Bacterial communities degrading amino- and hydroxynaphthylene-2-sulfonates. Appl. Environ. Microbiol. 52:1195–1202
    [Google Scholar]
  48. Oldenhuis R., Vink R. L. J. M., Janssen D. B., Witholt B. 1989; Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB 3b expressing soluble methane monooxygenase. Appl. Environ. Microbiol. 55:2819–2826
    [Google Scholar]
  49. O’Reilly K. T., Crawford R. L. 1989; Degradation of pentachlorophenol by polyurethane-immobilized Flavobacterium cells. Appl. Environ. Microbiol. 55:516–519
    [Google Scholar]
  50. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J. Gen. Appl. Microbiol. 29:17–40
    [Google Scholar]
  51. Palleroni N. J. 1984 Genus I. Pseudomonas Migula 1984. 141–199 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  52. Pickett M. J., Greenwood R. 1986; Pseudomonas alcaligenes and Pseudomonas testosterone, characterization and identification. Curr. Microbiol. 13:197–201
    [Google Scholar]
  53. Pickett M. J., Greenwood R. 1986; Identification of oxidase-positive, glucose-negative, motile species of nonfermentative bacilli. J. Clin. Microbiol. 23:920–923
    [Google Scholar]
  54. Rossau R., Kersters K., Falsen E., Jantzen E., Segers P., Union A., Nehls L., De Ley J. 1987; Oligella, a new genus including Oligella urethralis comb. nov. (formerly Moraxella urethralis) and Oligella ureolytica sp. nov. (formerly CDC group IVe): relationship to Taylorella equigenitalis and related taxa. Int. J. Syst. Bacteriol. 37:198–210
    [Google Scholar]
  55. Rossau R., Van Landshoot A., Mannheim W., De Ley J. 1986; Inter- and intrageneric similarities of ribosomal ribonucleic acid cistrons of the Neisseriaceae. Int. J. Syst. Bacteriol. 36:323–332
    [Google Scholar]
  56. Rubin J. S., Granato P. A., Wasilauskas B. L. 1985 Glucose-nonfermenting gram-negative bacteria. 330–349 Lennette E. H., Balows A., Hausler W. J. Jr., Shadomy H. J.ed Manual of clinical microbiology, 4th.ed American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  57. SchiegeI H. G. Personal communication
  58. Schleifer K. H., Stackebrandt E. 1983; Molecular systematics of prokaryotes. Annu. Rev. Microbiol. 37:143–187
    [Google Scholar]
  59. Sokatch J. R. 1986 The biology of Pseudomonas. Gunsalus I. C., Sokatch J. R., Ornston L. N.ed The bacteria 10 Academic Press, Inc.; New York:
    [Google Scholar]
  60. Taeger K., Knackmuss H.-J., Schmidt E. 1988; Biodegradability of mixtures of chloro- and methylsubstituted aromatics: simultaneous degradation of 3-chlorobenzoate and 3-methylbenzoate. Appl. Microbiol. Biotechnol. 28:603–608
    [Google Scholar]
  61. Tamaoka J., Ha D.-M., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb, nov., with an emended description of the genus Comamonas. Int. J. Syst. Bacteriol. 37:52–59
    [Google Scholar]
  62. Tenover F. C. 1988; Diagnostic deoxyribonucleic acid probes for infectious diseases. Clin. Microbiol. Rev. 1:721–725
    [Google Scholar]
  63. Thurnheer T., Kohler T., Cook A. M., Leisinger T. 1986; Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymatic desulfonation. J. Gen. Microbiol. 132:1215–1220
    [Google Scholar]
  64. Toschka H. Y., Hopfl P., Ludwig W., Schleifer K. H., Ulbrich N., Erdmann V. A. 1988; Complete nucleotide sequence of a 16S ribosomal RNA gene from Pseudomonas aeruginosa. Nucleic Acids Res. 16:2348
    [Google Scholar]
  65. Valle O., Dorsch M., Wilk R., Stackebrandt E. 1990; Nucleotide sequence of the 16S rRNA from Vibrio anguillarum. Syst. Appl. Microbiol. 13:257
    [Google Scholar]
  66. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Triiper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  67. Weisburg W. G., Oyaizu Y., Oyaizu H., Woese C. R. 1985; Natural relationship between bacteroides and flavobacteria. J. Bacteriol. 164:230–236
    [Google Scholar]
  68. Weisburg W. G., Woese C. R., Dobson M. E., Weiss E. 1985; A common origin of rickettsiae and certain plant pathogens. Science 230:556–558
    [Google Scholar]
  69. Willems A., Busse J., Goor M., Pot B., Falsen E., Jantzen E., Hoste B., Gillis M., Kersters K., Auling G., De Ley J. 1989; Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxy doflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int. J. Syst. Bacteriol. 39:319–333
    [Google Scholar]
  70. Willems A., Falsen E., Pott B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., De Ley J. 1990; Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb, nov., Acidovorax delafieldii comb, nov., and Acidovorax temperans sp. nov. Int. J. Syst. Bacteriol. 40:384–398
    [Google Scholar]
  71. Woese C. R., Blanz P., Hahn C. M. 1984; What isn’t a pseudomonad: the importance of nomenclature in bacterial classification. Syst. Appl. Microbiol. 5:179–195
    [Google Scholar]
  72. Yamada Y., Takinami-Nakamura H., Tahara Y., Oyaizu H., Komagata K. 1982; The ubiquinone system in the strains of Pseudomonas species. J. Gen. Appl. Microbiol. 28:7–12
    [Google Scholar]
  73. Yang D., Oyaizu Y., Oyaizu H., Olsen G. J., Woese C. R. 1985; Mitochondrial origins. Proc. Natl. Acad. Sci. USA 82:4443–4447
    [Google Scholar]
  74. Ziirrer D., Cook A. M., Leisinger T. 1987; Microbial desulfonation of substituted naphthalenesulfonic acids and benzenesulfonic acids. Appl. Environ. Microbiol. 53:1459–1463
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-42-1-19
Loading
/content/journal/ijsem/10.1099/00207713-42-1-19
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error