1887

Abstract

The levels of DNA-DNA hybridization among members of the three major groups of spp. that cause potato scab did not exceed 20% for any pair. The majority of the strains which we examined exhibited greater than 70% relatedness to the type strain, although values as low as 21% were obtained. The levels of homology between and nonpathogenic type strains belonging to the Diastatochromogenes group ranged from 10 to 42%, while the reciprocal values obtained with labeled DNAs from ATCC 25435 (T = type strain) and ATCC 14975 ranged from 37 to 74% and from 2 to 24%, respectively. In contrast to , the levels of relatedness between isolates and their type strain were high (83 to 111%). The levels of DNA relatedness within the group were uniformly low. These results are consistent with phenotypic data which indicate that pathogens in the three groups are not related. The genetic diversity of strains referred to as exceeds the genetic diversity found at the species level, and some of these strains appear to be related to phenotypically similar nonpathogens.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-41-4-479
1991-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/41/4/ijsem-41-4-479.html?itemId=/content/journal/ijsem/10.1099/00207713-41-4-479&mimeType=html&fmt=ahah

References

  1. Dopfer H., Stackebrandt E., Fiedler F. 1982; Nucleic acid hybridization studies on Microbacterium, Curtobacterium, Agromyces, and related taxa. J. Gen. Microbiol. 128:1697–1708
    [Google Scholar]
  2. Elesawy A. A., Szabo J. M. 1979; Isolation and characterization of Streptomyces scabies strains from scab lesions of potato tubers. Designation of the neotype strain of Streptomyces scabies. Acta Microbiol. Acad. Sci. Hung. 26:311–320
    [Google Scholar]
  3. Frontali C., Hill L. R., Silvestri L. G. 1965; The base composition of deoxyribonucleic acids of Streptomyces. J. Gen. Microbiol. 38:243–250
    [Google Scholar]
  4. Furumai T., Masayuki S., Sawairi S., Maruyama H. B. 1984; DNA homology studies in Streptomyces using SI nuclease. J. Antibiot. 37:641–645
    [Google Scholar]
  5. Hildebrand D. C., Huisman O. C., Schroth M. N. 1984; Use of DNA hybridization values to construct three-dimensional models of fluorescent pseudomonad relationships. Can. J. Microbiol. 30:306–315
    [Google Scholar]
  6. Hintermann G., Crameri R., Kieser T., Hutter R. 1981; Restriction analysis of the Streptomyces glaucesens genome by agarose gel electrophoresis. Arch. Microbiol. 130:218–222
    [Google Scholar]
  7. Hutter R. 1967 Systematic der Streptomyceten. Karger; Basel:
    [Google Scholar]
  8. Kerfin W., Kessler E. 1978; Physiological and biochemical contributions to the taxonomy of the genus Chlorella. Arch. Microbiol. 116:97–103
    [Google Scholar]
  9. King R. R., Lawrence C. H., Clark M. C. Correlation of phytotoxin production with pathogenicity of Streptomyces scabies from scab infected potato tubers. Am. Potato J. in press
    [Google Scholar]
  10. Lambert D. H. 1991; First report of additional hosts for the acid scab pathogen Streptomyces acidiscabies. Plant Dis. 75:750
    [Google Scholar]
  11. Lambert D. H., Loria R. 1989; Streptomyces scabies sp. nov., nom. rev. Int. J. Syst. Bacteriol. 39:387–392
    [Google Scholar]
  12. Lambert D. H., Loria R. 1989; Streptomyces acidiscabies sp. nov.. Int. J. Syst. Bacteriol. 39:393–396
    [Google Scholar]
  13. Lawrence C. H., Clark M. C., King R. R. 1990; Induction of common scab symptoms in aseptically cultured potato tubers by the vivotoxin, thaxtomin. Phytopathology 80:606–608
    [Google Scholar]
  14. Loria R. Personal communication
  15. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol. 12B:195–206
    [Google Scholar]
  16. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  17. Okanishi M., Akagawa H., Umezawa H. 1972; An evaluation of taxonomic criteria in streptomycetes on the basis of deoxyribonucleic acid homology. J. Gen. Microbiol. 72:49–58
    [Google Scholar]
  18. Okanishi M., Gregory K. F. 1970; Methods for the determination of deoxyribonucleic acid homologies in Streptomyces. J. Bacteriol. 104:1086–1094
    [Google Scholar]
  19. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113:237–251
    [Google Scholar]
  20. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16:313–340
    [Google Scholar]
  21. Shirling E. B., Gottlieb D. 1972; Cooperative description of type strains of Streptomyces. V. Additional descriptions. Int. J. Syst. Bacteriol. 16:313–340
    [Google Scholar]
  22. Thaxter R. 1891; The potato scab. Conn. Agric. Exp. Stn. Rep. 1890:81–95
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Triiper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  24. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J. 1983; Numerical classification of Streptomyces and related genera. J. Gen. Microbiol. 129:1743–1813
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-41-4-479
Loading
/content/journal/ijsem/10.1099/00207713-41-4-479
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error