1887

Abstract

We isolated strain HI350 from a gas and oil well in the Gulf of Mexico, characterized it, and found that it is closely related to T4/M (T = type strain), which we also characterized. The previously published characterization of the type strain of was limited to the optimum temperature for growth, and our characterization suggested the species description given below. Cells are irregular, nonmotile, coccoid, and 1.5 to 3 μm in diameter. The catabolic substrates used include methanol, trimethylamine, and dimethyl sulfide, but not H-CO, formate, or acetate. Growth is fastest in the presence of 0.4 to 0.6 M Na, in the presence of 60 to 200 mM Mg, at pH 6.5 to 6.8, and at 40°C. Growth on trimethylamine is stimulated by yeast extract. An electrophoretic analysis confirmed that strain HI350 is closely related to strain T4/M and indicated that major changes in the intracellular proteins of HI350 occur when the growth substrate is switched between dimethyl sulfide and trimethylamine.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-41-3-410
1991-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/41/3/ijsem-41-3-410.html?itemId=/content/journal/ijsem/10.1099/00207713-41-3-410&mimeType=html&fmt=ahah

References

  1. Andreae M. O., Raemdonck H. 1983; Dimethyl sulfide in the surface ocean and the marine atmosphere: a global view. Science 221:744–747
    [Google Scholar]
  2. Boone D. R., Whitman W. B. 1988; Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int. J. Syst. Bacteriol. 38:212–219
    [Google Scholar]
  3. Charlson R. J., Lovelock J. E., Andreae M. O., Warren S. G. 1987; Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature (London) 326:655–661
    [Google Scholar]
  4. Edgerton M. E., Brimblecombe P. 1981; Thermodynamics of halobacterial environments. Can. J. Microbiol. 27:899–909
    [Google Scholar]
  5. Hungate R. E. 1969 A roll tube method for cultivation of strict anaerobes. 117–132 Norris R., Ribbons D. W.ed Methods in microbiology 3B Academic Press, Inc.; New York:
    [Google Scholar]
  6. Kiene R. P. 1988; Dimethyl sulfide metabolism in salt marsh sediments. FEMS Microb. Ecol. 53:71–78
    [Google Scholar]
  7. Kiene R. P., Oremland R. S., Catena A., Miller L. G., Capone D. G. 1986; Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl. Environ. Microbiol. 52:1037–1045
    [Google Scholar]
  8. Kiene R. P., Visscher P. T. 1987; Production and fate of methylated sulfur compounds from methionine and dimethylsul-foniopropionate in anoxic salt marsh sediments. Appl. Environ. Microbiol. 53:2426–2434
    [Google Scholar]
  9. Liu Y., Boone D. R., Choy C. 1990; Methanohalophilus ore gone nse sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int. J. Syst. Bacteriol. 40:111–116
    [Google Scholar]
  10. Maestrojuân G. M., Boone D. R. 1991; Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6t, and Methanosarcina vacuolata Z-761T. Int. J. Syst. Bacteriol. 41:267–274
    [Google Scholar]
  11. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  12. Mathrani I. M., Boone D. R., Mah R. A., Fox G. E., Lau P. P. 1988; Methanohalophilus zhilinae sp. nov., an alkaliphilic, methylotrophic methanogen. Int. J. Syst. Bacteriol. 38:139–142
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the guanine-plus-cytosine content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  14. Oremland R. S., Kiene R. P., Whiticar M. J., Boone D. R. 1989; Description of an estuarine methylotrophic methanogen which grows on dimethyl sulfide. Appl. Environ. Microbiol. 55:944–1022
    [Google Scholar]
  15. Paterek J. R., Smith P. H. 1988; Methanohalophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen. Int. J. Syst. Bacteriol. 38:122–123
    [Google Scholar]
  16. Powell G. E. 1983; Interpreting gas kinetics of batch cultures. Biotechnol. Lett. 5:437–440
    [Google Scholar]
  17. Salsbury R. L., Merricks D. L. 1975; Production of methane thiol and dimethyl sulfide by rumen microorganisms. Plant Soil 43:191–209
    [Google Scholar]
  18. Sowers K. R., Ferry J. G. 1983; Isolation and characterization of a methylotrophic marine methanogen, Methanococcoides methylutens gen. nov., sp. nov. Appl. Environ. Microbiol. 45:684–690
    [Google Scholar]
  19. Stetter K. O. 1989 Genus II. Methanolobus König and Stetter 1983, 439. 2205–2207 Staley J. T., Bryant M. P., Pfennig N., Holt H. G.ed Bergey’s manual of systematic bacteriology 3 The William & Wilkins Co.; Baltimore:
    [Google Scholar]
  20. Taylor B. F., Kiene R. P. 1987 Microbial metabolism of dimethyl sulfide. 202–221 Saltzman E. S., Cooper W. J.ed Biogenic sulfur in the environment American Chemical Society; Washington, D.C:
    [Google Scholar]
  21. Trüper H. G., Schlegel H. G. 1964; Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okeii. Antonie van Leeuwenhoek J. Microbiol. Serol. 30:225–238
    [Google Scholar]
  22. Zhilina T. N., Zavarzin G. A. 1987; Methanohalobiumevistigatus, n. gen., n. sp., the extremely halophilic methanogenic archaebacterium. Dokl. Akad. Nauk SSSR 293:464–468
    [Google Scholar]
  23. Zinder S. H., Brock T. D. 1978; Methane, carbon dioxide, and hydrogen sulfide production from the terminal methiol group of methionine by anaerobic lake sediments. Appl. Environ. Microbiol. 35:344–352
    [Google Scholar]
  24. Zinder S. H., Brock T. D. 1978; Production of methane and carbon dioxide from methane thiol and dimethylsulfide by anaerobic lake sediments. Nature (London) 273:226–228
    [Google Scholar]
  25. Zinder S. H., Doemel W. N., Brock T. D. 1977; Production of volatile sulfur compounds during the decomposition of algae mats. Appl. Environ. Microbiol. 34:859–860
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-41-3-410
Loading
/content/journal/ijsem/10.1099/00207713-41-3-410
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error