1887

Abstract

sp. nov. was isolated from slightly saline soils of Western Canada, where strains of this species accounted for ≤5% of the aerobic nitrogen-fixing isolates. Also, one isolate was obtained from a saline Egyptian soil. These bacteria shared many physiological traits with , but were absolutely dependent on Na ions for growth and frequently used melibiose as a carbon and energy source. Aerobically grown cells were melanized dark brown to black; the cells were large, gram negative, oval with pointed ends, and motile by means of peritrichous flagella and formed pairs and chains of six to eight cells during active growth. Capsule production was variable. Nitrogen fixation by occurred optimally at 35°C in the presence of molybdate or vanadate ions in a microaerophilic, aeroadaptive manner. The cells were very sensitive to HO and catalase negative. However, a single weak catalase electromorph was observed in cell extracts. This contrasted with a very active catalase represented by multiple electromorphs in . Iron was absolutely required for growth and aeroadaptation. Other growth-promoting substrates included fructose, galactose, glucose, mannitol, starch, and sucrose. Acid was formed from growth-promoting sugars and also from the non-growth-promoting substrates arabinose, cellobiose, lactose, mannose, rhamnose, and xylose. Incubation in the presence of increased NaCl concentrations promoted acidification of the culture to inhibitory levels, and sufficient acid was released from nitrogen-fixing cells in the presence of 1.0 to 1.5% NaCl to solubilize CaCO suspended in solid medium. The cells grew well in marine broth alone, producing an alkaline reaction. An acid reaction was produced both oxidatively and fermentatively in marine broth containing glucose. Nitrate was used in an assimilatory fashion, and there was no evidence of NO- or N formation. The type strain is strain 184 (=ATCC 49674), which was isolated from soils of Alberta, Canada.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-41-3-369
1991-07-01
2024-03-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/41/3/ijsem-41-3-369.html?itemId=/content/journal/ijsem/10.1099/00207713-41-3-369&mimeType=html&fmt=ahah

References

  1. Becking J.-H. 1981 The family Azotobacteraceae,. 795–817 Starr M. P., Stolp H., Triiper H. G., Balows A., Schlegel H. G.ed The prokayotes. A handbook on habitats, isolation and identification of bacteria 1 Springer-Verlag; Berlin:
    [Google Scholar]
  2. Bingle W. H. 1988; Transformation of Azotobacter vinelandii OP with a broad host range plasmid containing a cloned chromosomal ni/’-DNA marker. Plasmid 19:242–250
    [Google Scholar]
  3. Butler M. J., Lachance M.-A. 1987; The use of N,N,N’,N’-tetramethyl phenylenediamine to detect peroxidase activity on polyacrylamide electrophoresis gels. Anal. Biochem. 162:443–445
    [Google Scholar]
  4. Cho K. Y., Pope L., Wyss O. 1974; Formation of protoplasts in Azotobacter vinelandii. Arch. Microbiol. 101:337–342
    [Google Scholar]
  5. Davis B. J. 1964; Disc electrophoresis. II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121:404–427
    [Google Scholar]
  6. Dicker H. J., Smith D. W. 1980; Enumeration and relative importance of acetylene-reducing (nitrogen-fixing) bacteria in a Delaware salt marsh. Appl. Environ. Microbiol. 39:1019–1025
    [Google Scholar]
  7. Dicker H. J., Smith D. W. 1981; Effects of salinity on acetylene reduction (nitrogen fixation) and respiration in a marine Azotobacter. Appl. Environ. Microbiol. 42:740–744
    [Google Scholar]
  8. Duff J. T., Wyss O. 1961; Isolation and classification of a new series of Azotobacter bacteriophages. J. Gen. Microbiol. 24:273–289
    [Google Scholar]
  9. Eady R. R. 1989; The vanadium nitrogenase of Azotobacter. Polyhedron 8:1695–1700
    [Google Scholar]
  10. Fauzi R., Mantoura C. 1987; Organic films at the halocline. Nature (London) 328:579–580
    [Google Scholar]
  11. Good N. E., Winget G. D., Winter W., Connolly T. N., Izaea S., Singh R. M. M. 1966; Hydrogen ion buffers for biological research. Biochemistry 5:467–477
    [Google Scholar]
  12. Joerger R. D., Bishop P. E. 1988; Bacterial alternative nitrogen fixation systems. Crit. Rev. Microbiol. 16:1–14
    [Google Scholar]
  13. Johnson J. L. 1981 Genetic characterization. 457–458 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  14. Jurtshuk P. Jr., Liu J.-K., Moore E. R. B. 1984; Comparative cytochrome oxidase and superoxide dismutase analyses on strains of Azotobacter vinelandii and other related free-living nitrogen-fixing bacteria. Appl. Environ. Microbiol. 47:1185–1187
    [Google Scholar]
  15. Jurtshuk P. Jr., Mueller T. J., McQuitty D. N., Riley W. H. 1978 The cytochrome oxidase reaction in Azotobacter vinelandii and other bacteria. 99–121 Degn H., Lloyd D., Hill G. C.ed Functions of alternative terminal oxidases. Proceedings of the 11th Federated European Biochemical Societies, Copenhagen Pergamon Press; Oxford:
    [Google Scholar]
  16. Jurtshuk P. Jr., Mueller T. J., Wong T.-Y. 1981; Isolation and purification of the cytochrome oxidase of Azotobacter vinelandii. Biochim. Biophys. Acta 637:374–382
    [Google Scholar]
  17. Katsuwon J., Anderson J. 1989; Response of plant-colonizing pseudomonads to hydrogen peroxide. Appl. Environ. Microbiol. 55:2985–2989
    [Google Scholar]
  18. Lemos M. L., Toranzo A. E., Barja J. L. 1985; Modified medium for the oxidation-fermentation test in the identification of marine bacteria. Appl. Environ. Microbiol. 49:1541–1543
    [Google Scholar]
  19. Loewen P. C., Switala J. 1987; Multiple catalases in Bacillus subtilis. J. Bacteriol. 169:3601–3607
    [Google Scholar]
  20. Loewen P. C., Triggs B. L. 1984; Genetic mapping of katF, a locus that with katE affects the synthesis of a second catalase species in Escherichia coli. J. Bacteriol. 160:668–675
    [Google Scholar]
  21. Mahmoud S. A. Z., El-Sawy M., Ishac Y. Z., El-Safty M. M. 1978; The effects of salinity and alkalinity on the distribution and capacity of N2-fixation by Azotobacter in Egyptian soils. Ecol. Bull. (Stockholm) 26:99–109
    [Google Scholar]
  22. Mitchell J. G., Okubo A., Fuhrman J. A. 1985; Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem. Nature (London) 316:58–59
    [Google Scholar]
  23. Moore E. R. B., Fox G. E., Jurtshuk P. Jr. 1990; Abstr. Annu. Meet. Am. Soc. Microbiol. 1990, H251. 196
  24. Page W. J. 1983; Formation of cystlike structures by ironlimited Azotobacter vinelandii strain UW during prolonged storage. Can. J. Microbiol. 29:1110–1118
    [Google Scholar]
  25. Page W. J. 1986; Sodium-dependent growth of Azotobacter chroococcum. Appl. Environ. Microbiol. 51:510–514
    [Google Scholar]
  26. Page W. J. 1987; Iron-dependent production of hydroxamate by sodium-dependent Azotobacter chroococcum. Appl. Environ. Microbiol. 53:1418–1424
    [Google Scholar]
  27. Page W. J., Collinson S. K. 1982; Molybdenum enhancement of nitrogen fixation in a Mo-starved Azotobacter vinelandii Nif- mutant. Can. J. Microbiol. 28:1173–1180
    [Google Scholar]
  28. Page W. J., Jackson L., Shivprasad S. 1988; Sodiumdependent Azotobacter chroococcum strains are aeroadaptive, microaerophilic, nitrogen-fixing bacteria. Appl. Environ. Microbiol. 54:2123–2128
    [Google Scholar]
  29. Page W. J., von Tigerstrom M. 1982; Iron- and molybdenum-repressible outer membrane proteins in competent Azotobacter vinelandii. J. Bacteriol. 151:237–242
    [Google Scholar]
  30. Pshenin L. N. 1963 Distribution and ecology of Azotobacter in the Black Sea. 383–391 Oppenheimer C. H.ed Symposium on marine microbiology Charles C Thomas, Publisher; Springfield, III:
    [Google Scholar]
  31. Reichelt J. L., Baumann P. 1974; Effect of sodium chloride on growth of heterotrophic marine bacteria. Arch. Microbiol. 97:329–345
    [Google Scholar]
  32. Robson R. L., Postgate J. R. 1980; Oxygen and hydrogen in biological nitrogen fixation. Annu. Rev. Microbiol. 34:183–207
    [Google Scholar]
  33. Russell D. A. 1989 An odyssey in time. The dinosaurs of North America. 120–141 University of Toronto Press, Toronto; Ontario, Canada:
    [Google Scholar]
  34. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. 1986; Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl. Environ. Microbiol. 51:873–884
    [Google Scholar]
  35. Shivprasad S., Page W. J. Catechol formation and melanization by Na+-dependent Azotobacter chroococcum’. a protective mechanism for aeroadaptation?. Appl. Environ. Microbiol. 55:1811–1817
    [Google Scholar]
  36. Smibert R. M., Krieg N. R. 1981 General characterization. 413–419 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  37. Tchan Y.-T., New P. B. 1984 Genus I. Azotobacter Beijerinck 1901, 567AL. 220–229 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  38. Thompson J. P., Skerman V. B. D. 1979 Azotobacteraceac. the taxonomy and ecology of the aerobic nitrogen-fixing bacteria. Academic Press, Inc.; New York:
    [Google Scholar]
  39. Tsong H., Mathmeier P. F. 1989 Abstr. Annu. Meet. Am. Soc. Microbiol. 1989 I-91232
    [Google Scholar]
  40. Vela G. R., Wyss O. 1964; Improved stain for visualization of Azotobacter encystment. J. Bacteriol. 87:476–477
    [Google Scholar]
  41. Wilson T. H., Wilson D. M. 1983 Sugar-cation cotransport systems in bacteria. 1–39 Elson E., Frazier W., Glaser L.ed Cell membranes. Methods and reviews 1 Plenum Press; New York:
    [Google Scholar]
  42. ZoBell C. E. 1946 Marine microbiology. A monograph on hydrobiology. 156–157 Chronica Botanica Co., Publishers; Waltham, Mass:
    [Google Scholar]
  43. Zutic V., Legovic T. 1987; A film of organic matter at the fresh-water/sea-water interface of an estuary. Nature (London) 328:612–614
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-41-3-369
Loading
/content/journal/ijsem/10.1099/00207713-41-3-369
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error