1887

Abstract

DNA-rRNA hybridization results showed that members of the genus , members of the genus and their relatives, members of the genus , the false neisseriae, and two misnamed strains constitute a separate genotypic cluster. A new family, , is proposed to accommodate these organisms. The genus is the type genus. Within the two main groups can be distinguished. One group includes the species. The other group can be subdivided in four subgroups consisting of (i) the authentic moraxellae (, and two misnamed strains), (ii) the generically misnamed taxon , (iii) the generically misnamed taxon , and (iv) the generically misnamed taxon , and allied organisms. The cluster belongs to the class and is a member of superfamily II, which includes the authentic pseudomonads and related organisms. It is not related to the family .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-41-2-310
1991-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/41/2/ijsem-41-2-310.html?itemId=/content/journal/ijsem/10.1099/00207713-41-2-310&mimeType=html&fmt=ahah

References

  1. Baumann P., Doudoroff M., Stanier R. Y. 1968; Study of the Moraxella group. I. Genus Moraxella and the Neisseria catarrhalis group. J. Bacteriol. 95:58–73
    [Google Scholar]
  2. Bouvet P. J. M., Grimont P. A. D. 1986; Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter Iwoffii. Int. J. Syst. Bacteriol. 36:228–240
    [Google Scholar]
  3. Bpvre K. 1967; Studies on transformation in Moraxella and organisms assumed to be related to Moraxella. VIII. The relative position of some oxidase negative, immotile diplobacilli (Achromobacter) in the transformation system. Acta Pathol. Microbiol. Scand. 69:109–122
    [Google Scholar]
  4. Bpvre K. 1970; Pulse-RNA-DNA hybridization between rod shaped and coccal species of the Moraxella-Neisseria groups. Acta Pathol. Microbiol. Scand. Sect. B 78:565–574
    [Google Scholar]
  5. Bpvre K. 1980 Progress in classification and identification of Neisseriaceae based on genetic affinity. 55–72 Goodfellow M., Board R. G.ed Microbiological classification and identification Academic Press, Inc. (London), Ltd.; London:
    [Google Scholar]
  6. Bpvre K. 1984 Family VIII. Neisseriaceae Prevot 1933,119AL. 288–309 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  7. Bovre K., Fuglesang J. E., Hagen N., Jantzen E., Frpholm L. O. 1976; Moraxella atlantae sp. nov. and its distinction from Moraxella phenylpyruvica. Int. J. Syst. Bacteriol. 26:511–521
    [Google Scholar]
  8. Bpvre K., Fuglesang J. E., Henriksen S. D., Lapage S. P., Lautrop H., Snell J. J. S. 1974; Studies on a collection of gram-negative bacterial strains showing resemblance to moraxellae: examination by conventional bacteriological methods. Int. J. Syst. Bacteriol. 24:438–446
    [Google Scholar]
  9. Bryn K., Jantzen E., Bpvre K. 1977; Occurrence and patterns of waxes in Neisseriaceae. J. Gen. Microbiol. 102:33–43
    [Google Scholar]
  10. Canovas J. L., Stanier R. Y. 1967; Regulation of the enzymes of the 0-ketoadipate pathway in Moraxella calcoaceticus. I. General aspects. Eur. J. Biochem. 1:289–300
    [Google Scholar]
  11. Catlin B. W. 1964; Reciprocal genetic transformation between Neisseria catarrhalis and Moraxella nonliquefaciens. J. Gen. Microbiol. 37:369–379
    [Google Scholar]
  12. Catlin B. W., Cunningham L. S. 1961; Transforming activities and base contents of deoxyribonucleate preparations from various neisseriae. J. Gen. Microbiol. 26:303–312
    [Google Scholar]
  13. Catlin B. W., Cunningham L. S. 1964; Genetic transformation of Neisseria catarrhalis by deoxyribonucleate preparations having different average base compositions. J. Gen. Microbiol. 37:341–352
    [Google Scholar]
  14. Catlin B. W., Cunningham L. S. 1964; Transforming activities and base composition of deoxyribonucleates from strains of Moraxella and Mima. J. Gen. Microbiol. 37:353–367
    [Google Scholar]
  15. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101:738–754
    [Google Scholar]
  16. De Ley J. 1978 Modern methods in bacterial taxonomy: evaluation, application, prospects. 347–357 Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, Angers, vol. 1 Gibert-Clarey; Tours, France:
    [Google Scholar]
  17. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  18. De Ley J., De Smedt J. 1975; Improvements of the membrane filter method for DNA:rRNA hybridization. Antonie van Leeuwenhoek J. Microbiol. Serol. 41:287–308
    [Google Scholar]
  19. De Ley J., Van Muylem J. 1963; Some applications of deoxyribonucleic acid base composition in bacterial taxonomy. Antonie van Leeuwenhoek J. Microbiol. Serol. 29:344–358
    [Google Scholar]
  20. De Ley J. et al. Unpublished data
  21. De Vos P., Van Landschoot A., Segers P., Tytgat R., Gillis M., Bau wens M., Rossau R., Goor M., Pot B., Kersters K., Lizzaraga P., De Ley J. 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-Xikt strains by deoxyribonucleic acid:ribosomal ribonucleic acid hybridizations. Int. J. Syst. Bacteriol. 39:35–49
    [Google Scholar]
  22. Dewhirst F. E., Paster B. J., Bright P. L. 1989; Chromobacterium, Eikenella, Kingella, Neisseria, Simonsiella, and Vitreoscilla species comprise a major branch of the beta group Proteobacteria by 16S ribosomal ribonucleic acid sequence comparison: transfer of Eikenella and Simonsiella to the family Neisseriaceae (emend.). Int. J. Syst. Bacteriol. 39:258–266
    [Google Scholar]
  23. Dewhirst F. E., Paster B. J., La Fontaine S., Rood J. I. 1990; Transfer of Kingella indologenes (Snell and Lapage 1976) to the genus Suttonella gen. nov. as Suttonella indologenes comb, nov.; transfer of Bacteroides nodosus (Beveridge 1941) to the genus Dichelobacter gen. nov. as Dichelobacter nodosus comb, nov.; and assignment of the genera Cardiobacterium, Dichelobacter, and Suttonella to Cardiobacteriaceae fam. nov. in the gamma division of Proteobacteria on the basis of 16S rRNA sequence comparisons. Int. J. Syst. Bacteriol. 40:426–433
    [Google Scholar]
  24. Falsen E. 1988 Catalogue of strains. Culture Collection, University of Göteborg; Göteborg, Sweden:
    [Google Scholar]
  25. Gillis M., De Ley J. 1975; Determination of the molecular complexity of double-stranded phage genome DNA from initial renaturation rates. The effect of DNA base composition. J. Mol. Biol. 98:447–464
    [Google Scholar]
  26. Gillis M., De Ley J. 1980; Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter. Int. J. Syst. Bacteriol. 30:7–27
    [Google Scholar]
  27. Gillis M., De Ley J., De Cleene M. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur. J. Biochem. 12:143–153
    [Google Scholar]
  28. Gillis M. et al. Manuscript in preparation
  29. Grant P. E., Brenner D. J., Steigerwalt A. G., Hollis D. G., Weaver R. 1990; Neisseria elongata subsp. nitroreducens subsp. nov., formerly CDC group M-6, a gram-negative bacterium associated with endocarditis. J. Clin. Microbiol. 28:2591–2596
    [Google Scholar]
  30. Grosch H. 1989 M.D. thesis Philipps Universität Marburg, Marburg; Federal Republic of Germany:
  31. Henriksen S. D., Bpvre K. 1968; The taxonomy of the genera Moraxella and Neisseria. J. Gen. Microbiol. 51:387–392
    [Google Scholar]
  32. Henriksen S. D., Bovre K. 1976; Transfer of Moraxella kingae Henriksen and B0vre to the genus Kingella gen. nov. in the family Neisseriaceae. Int. J. Syst. Bacteriol. 26:447–450
    [Google Scholar]
  33. Hoke C., Vedros N. A. 1982; Taxonomy of the neisseriae: deoxyribonucleic acid base composition, interspecific transformation, and deoxyribonucleic acid hybridization. Int. J. Syst. Bacteriol. 32:57–66
    [Google Scholar]
  34. Holten E. 1974; Glucokinase and glucose-6-phosphate dehydrogenase in Neisseria. Acta Pathol. Microbiol. Scand. Sect. B 82:201–206
    [Google Scholar]
  35. Holten E. 1974; 6-Phosphogluconate dehydrogenase and enzymes of the Entner-Doudoroff pathway in Neisseria. Acta Pathol. Microbiol. Scand. Sect. B 82:207–213
    [Google Scholar]
  36. Holten E. 1974; Immunological comparison of NADP-dependent glutamate dehydrogenase and malate dehydrogenase in genus Neisseria. Acta Pathol. Microbiol. Scand Sect. B 82:849–859
    [Google Scholar]
  37. Holten E. 1976; Radiorespirometric studies in genus Neisseria. III. The catabolism of pyruvate and acetate. Acta Pathol. Microbiol. Scand. Sect. B 84:9–16
    [Google Scholar]
  38. Hudson M. J., Hollis D. G., Weaver R. E., Galvis C. G. 1987; Relationship of CDC group EO-2 and Psychrobacter immobilis. J. Clin. Microbiol. 25:1907–1910
    [Google Scholar]
  39. Jantzen E., Bryn K., Bergan T., Bovre K. 1974; Gas chromatography of bacterial whole cell methanolysates. V. Fatty acid composition of neisseriae and moraxellae. Acta Pathol. Microbiol. Scand. Sect. B 82:767–779
    [Google Scholar]
  40. Jantzen E., Bryn K., Bpvre K. 1976; Cellular monosaccharide patterns of Neisseriaceae. Acta Pathol. Microbiol. Scand. Sect. B 84:177–188
    [Google Scholar]
  41. Jantzen E., Bryn K., Hagen N., Bergan T., Bovre K. 1978; Fatty acids and monosaccharides of Neisseriaceae in relation to established taxonomy. Natl. Inst. Public Health Ann. (Norway) 1:59–71
    [Google Scholar]
  42. Jantzen E., Kvalheim O. M., Hauge T. A., Hagen N., Bdvre K. 1987; Grouping of bacteria by Simca pattern recognition on gas chromatographic lipid data: patterns among Moraxella and rod-shaped Neisseria. Syst. Appl. Microbiol. 9:142–150
    [Google Scholar]
  43. Johnson J. L., Anderson R. S., Ordal E. J. 1970; Nucleic acid homologies among oxidase-negative Moraxella species. J. Bacteriol. 101:568–573
    [Google Scholar]
  44. Juni E. 1974; Simple genetic transformation assay for rapid diagnosis of Moraxella osloensis. Appl. Microbiol. 27:16–24
    [Google Scholar]
  45. Juni E. 1978; Genetics and physiology of Acinetobacter. Annu. Rev. Microbiol. 32:349–371
    [Google Scholar]
  46. Juni E., Heym G. A. 1980; Transformation assay for identification of psychrotrophic achromobacters. Appl. Environ. Microbiol. 40:1106–1114
    [Google Scholar]
  47. Juni E., Heym G. A. 1986; Psychrobacter immobilis gen. nov., sp. nov.: genospecies composed of gram-negative, aerobic, oxidase-positive coccobacilli. Int. J. Syst. Bacteriol 36:388–391
    [Google Scholar]
  48. Kroppenstedt R. M., Mannheim W. Personal communication
  49. Lessel E. F. 1971; International Committee on Nomenclature of Bacteria Minutes. Subcommittee on the Taxonomy of Moraxella and Allied Bacteria. Int. J. Syst. Bacteriol. 21:213–214
    [Google Scholar]
  50. Lwoff A. 1939; Révision et démembrement des Hemophileae, le genre Moraxella nov. gen. Ann. Inst. Pasteur (Paris) 62:168–176
    [Google Scholar]
  51. Marmur J. A. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  52. Moss C. W., Wallace P. L., Hollis D. G., Weaver R. E. 1988; Cultural and chemical characterization of CDC groups EO-2, M-5, and M-6, Moraxella (Moraxella) species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobilis. J. Clin. Microbiol. 26:484–492
    [Google Scholar]
  53. Nishimura Y., Ino T., Iizuka H. 1988; Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int. J. Syst. Bacteriol. 38:209–211
    [Google Scholar]
  54. Nishimura Y., Kinpara M., Iizuka H. 1989; Mesophilobacter marinus gen. nov., sp. nov.: an aerobic coccobacillus isolated from seawater. Int. J. Syst. Bacteriol. 39:378–381
    [Google Scholar]
  55. Piechulla K., Pohl S., Mannheim W. 1986; Phenotypic and genetic relationships of so-called Moraxella (Pasteurella) anatipestifer to the Flavobacterium/Cytophaga group. Vet. Microbiol. 11:261–270
    [Google Scholar]
  56. Pot B., Gillis M., Hoste B., Van De Velde A., Bekaert F., Kersters K., De Ley J. 1989; Intra- and intergeneric relationships of the genus Oceanospirillum. Int. J. Syst. Bacteriol. 39:23–34
    [Google Scholar]
  57. Reyn A. 1974 Family I. Neisseriaceae Prévôt 1933, 119. 427–433 Buchanan R. E., Gibbons N. E.ed Bergey’s manual of determinative bacteriology, 8th. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  58. Richards G. M. 1974; Modification of the diphenylamine reaction giving increased sensitivity and simplicity in the estimation of DNA. Anal. Biochem. 57:369–376
    [Google Scholar]
  59. Rossau R., Kersters K., Falsen E., Jantzen E., Segers P., Union A., Nehls L., De Ley J. 1987; Oligella, a new genus including Oligella urethralis comb. nov. (formerly Moraxella urethralis) and Oligella ureolytica sp. nov. (formerly CDC group IVe): relationship to Taylorella equigenitalis and related taxa. Int. J. Syst. Bacteriol. 37:198–210
    [Google Scholar]
  60. Rossau R., Vandenbussche G., Thielemans S., Segers P., Grosch H., Göthe E., Mannheim W., De Ley J. 1989; Ribosomal ribonucleic acid cistron similarities and deoxyribonucleic acid homologies of Neisseria, Kingella, Eikenella, Simonsiella, Alysiella, and Centers for Disease Control groups EF-4 and M-5 in the emended family Neisseriaceae. Int. J. Syst. Bacteriol. 39:185–198
    [Google Scholar]
  61. Rossau R., Van Landschoot A., Mannheim W., De Ley J. 1986; Inter- and intrageneric similarities of ribosomal ribonucleic acid cistrons of the Neisseriaceae. Int. J. Syst. Bacteriol. 36:323–332
    [Google Scholar]
  62. Rubin J. S., Granato P. A., Wasilauskas B. L. 1985 Glucose-nonfermenting gram-negative bacteria. 330–349 Lennette E. H., Balows A., Hausler W. J. Jr., Shadomy H. J.ed Manual of clinical microbiology, 4th. American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  63. Sokal R. R., Sneath P. H. A. 1963 Principles of numerical taxonomy. W. H. Freeman and Co.; San Francisco:
    [Google Scholar]
  64. Stackebrandt E., Murray R. G. E., Trüper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.”. Int. J. Syst. Bacteriol. 38:321–325
    [Google Scholar]
  65. Sugimoto C., Isayama Y., Sakazaki R., Kuramochi S. 1983; Transfer of Haemophilus equigenitalis Taylor et al. 1978 to the genus Taylorella gen. nov. as Taylorella equigenitalis comb, nov. Curr. Microbiol. 9:155–162
    [Google Scholar]
  66. Sugimoto C., Miyagawa E., Nakazawa M., Mitani K., Isayama Y. 1983; Cellular fatty acid composition comparisons of Haemophilus equigenitalis and Moraxella species. Int. J. Syst. Bacteriol. 33:181–187
    [Google Scholar]
  67. Thornley M. J. 1967; A taxonomic study of Acinetobacter and related genera. J. Gen. Microbiol. 49:211–257
    [Google Scholar]
  68. Tönjun T., Bukholm G., Bovre K. 1989; Differentiation of some species of Neisseriaceae and other bacterial groups by DNA-DNA hybridization. Acta Pathol. Microbiol. Scand 97:395–405
    [Google Scholar]
  69. Vandamme P., Falsen E., Rossau R., Hoste B., Segers P., Tytgat R., De Ley J. 1991; Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov.. Int. J. Syst. Bacteriol. 41:88–103
    [Google Scholar]
  70. Van Landschoot A., Rossau R., De Ley J. 1986; Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acinetobacter. Int. J. Syst. Bacteriol. 36:150–160
    [Google Scholar]
  71. Vedros N. A. 1984 Neisseria Trevisan 1885, 105AL. 290–296 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  72. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  73. Woese C. R., Weisburg W. G., Hahn C. M., Paster B. J., Zahlen L. B., Lewis B. J., Macke T. J., Ludwig W., Stackebrandt E. 1985; Phylogeny of purple bacteria: the gamma subdivision. Syst. Appl. Microbiol. 6:25–33
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-41-2-310
Loading
/content/journal/ijsem/10.1099/00207713-41-2-310
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error