1887

Abstract

Sulfate-reducing bacterial strain HR was isolated from sediments of Retba Lake, a pink hypersaline lake in Senegal. The cells were motile, nonsporulating, and rod shaped with polar flagella and incompletely oxidized a limited range of substrates to acetate and CO. Acetate and vitamins were required for growth and could be replaced by Biotrypcase or yeast extract. Sulfate, sulfite, thiosulfate, and elemental sulfur were used as electron acceptors and were reduced to HS. Growth occurred at pH values ranging from 5.5 to 8.0. The optimum temperature for growth was 37 to 40°C. NaCl and MgCl were required for growth; the optimum NaCl concentration was near 10%. The guanine-plus-cytosine content of the DNA was 57.1 ± 0.2 mol%. On the basis of the morphological and physiological properties of this strain, we propose that it should be classified in a new genus, , which includes a single species, . The type strain is strain DSM 5692.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-41-1-74
1991-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/41/1/ijsem-41-1-74.html?itemId=/content/journal/ijsem/10.1099/00207713-41-1-74&mimeType=html&fmt=ahah

References

  1. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem. 81:461–466
    [Google Scholar]
  2. Caumette P. Personal communication
  3. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfatereducing bacteria. J. Microbiol. Methods 4:33–36
    [Google Scholar]
  4. Cord-Ruwisch R., Kleinitz W., Widdel F. 1985; Sulfatereducing bacteria and their economic activities. Soc. Petrol. Eng. 13554:53–58
    [Google Scholar]
  5. Cord-Ruwisch R., Ollivier B., Garcia J. L. 1986; Fructose degradation by Desulfovibrio sp. in pure culture and in coculture with Methanospirillum hungatei. Curr. Microbiol. 13:285–289
    [Google Scholar]
  6. Cord-Ruwisch R., Seitz H. J., Conrad R. 1988; The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149:356–357
    [Google Scholar]
  7. Devereux R., Delaney M., Widdel F., Stahl D. 1989; Natural relationships among sulfate-reducing eubacteria. J. Bacteriol. 171:6689–6695
    [Google Scholar]
  8. Dunkelblum E., Tan S. H., Silk P. J. 1985; Double bond location in monounsaturated fatty acids by dimethyl disulphide derivatisation and mass spectrometry: application to analysis of fatty acid impheromone glands of four lepidoptera. J. Chern. Ecol. 11:265–277
    [Google Scholar]
  9. Hatchikian E. C., Zeikus J. G. 1983; Characterization of a new type of dissimilatory sulfite reductase present in Thermodesulfobacterium commune. J. Bacteriol. 153:1211–1220
    [Google Scholar]
  10. Hungate R. E. 1969 A roll tube method for cultivation of strict anaerobes. 117–132 Norris J. R., Ribbons D. W.ed Methods in microbiology 3B Academic Press, Inc.; New York:
    [Google Scholar]
  11. Imhoff-Stuckle D., Pfennig N. 1983; Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch. Microbiol. 136:194–198
    [Google Scholar]
  12. Klug M., Boston P., Francois R., Gyure R., Javor B., Tribble G., Vairavamurty A. 1985; Sulfur reduction in sediments of marine and evaporite environments. NASA Tech. Memo. 87510:128–157
    [Google Scholar]
  13. Lee J. P., Yi C. S., LeGall J., Peck H. D. Jr. 1973; Isolation of a new pigment, desulforubidin, from Desulfovibrio desulfuricans (Norway strain) and its role in sulfite reduction. J. Bacteriol. 115:453–455
    [Google Scholar]
  14. Lovley D. R., Klug M. J. 1983; Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl. Environ. Microbiol. 45:187–192
    [Google Scholar]
  15. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J. Biol. Chern. 193:265–275
    [Google Scholar]
  16. Mathrani I., Boone D. R. 1985; Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Appl. Environ. Microbiol. 50:140–143
    [Google Scholar]
  17. Mathrani L, Boone D. R., Mah R. A., Fox G. E., Lau P. P. 1988; Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int. J. Syst. Bacteriol. 38:139–142
    [Google Scholar]
  18. Mathrani I., Ollivier B., Boone D. R., Mah R. A. 1987 Enrichment and enumeration of methanogenic, sulfate reducing, and cellulolytic bacteria, 174. 184 Abstr. Annu. Meet. Am. Soc. Microbiol 1987 American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  19. Meshbah M., Premachandran U., Whitman W. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  20. Nissenbaum A., Kaplan I. R. 1976 Sulfur and carbon isotopic evidence for biogeochemical processes in the Dead Sea ecosystem. 309–325 Nriagu J. O.ed Environmental biogeochemistry 1 Ann Arbor Science Publishers; Ann Arbor, Mich:
    [Google Scholar]
  21. Ollivier B., Cord-Ruwisch R., Hatchikian E. C., Garcia J. L. 1988; Characterization of Desulfovibrio fructosovorans sp. nov. Arch. Microbiol. 149:447–450
    [Google Scholar]
  22. Ollivier B., Mah R. A., Garcia J. L., Robinson R. 1985; Isolation and characterization of Methanogenium aggregans sp. nov. Int. J. Syst. Bacteriol. 35:127–130
    [Google Scholar]
  23. Oren A. 1983; Clostridium lortetii sp. nov., a halophilic obligatory anaerobic bacterium producing endospores with attached gas vacuoles. Arch. Microbiol. 136:42–48
    [Google Scholar]
  24. Oren A. 1987 The microbial ecology of the Dead Sea. 193–229 Marshall K. C.ed Advances in microbial ecology 10 Plenum Publishing Co.; New York:
    [Google Scholar]
  25. Oren A. 1988; Anaerobic degradation of organic compounds at high salt concentrations. Antonnie van Leeuwenhoek 54:267–277
    [Google Scholar]
  26. Oren A., Pohla H., Stackebrandt E. 1987; Transfer of Clostridium lortetii to a new genus, Sporohalobacter gen. nov., as Sporohalobacter lortetii comb, nov., and description of Sporohalobacter marismortui sp. nov. Syst. Appl. Microbiol. 9:239–246
    [Google Scholar]
  27. Oren A., Weisburg W. G., Kessel M., Woese C. R. 1984; Halobacteroides halobius gen. nov., sp. nov., a moderately halophilic anaerobic bacterium from the bottom sediments of the Dead Sea. Syst. Appl. Microbiol. 5:58–70
    [Google Scholar]
  28. Parkes R. J. 1987; Analysis of microbial communities within sediments using biomarkers. Symp. Soc. Gen. Microbiol 41:
    [Google Scholar]
  29. Parkes R. J., Taylor J. 1983; The relationship between fatty acid distributions and bacterial respiratory types in contemporary marine sediments. Estuarine Coastal Shelf Sci 16:173–189
    [Google Scholar]
  30. Paterek J. R., Smith P. 1985; Isolation and characterization of a halophilic methanogen from Great Salt Lake. Appl. Environ. Microbiol. 50:877–881
    [Google Scholar]
  31. Pfennig N., Widdel F., Triiper H. G. 1981 The dissimilatory sulfate-reducing bacteria. 926–940 Starr M. P., Stolp H., Triiper H. G., Balows A., Schlegel H. G.ed The prokaryotes 1 Springer-Verlag KG; Berlin:
    [Google Scholar]
  32. Postgate J. R. 1959; A diagnostic reaction of Desulphovibrio desulphuricans. Nature (London) 183:481–482
    [Google Scholar]
  33. Rengpipat S., Langworthy T. A., Zeikus J. G. 1988; Halobacteroides acetoethylicus sp. nov., a new obligately anaerobic halophile isolated from deep subsurface hypersaline environments. Syst. Appl. Microbiol. 11:28–35
    [Google Scholar]
  34. Rozanova E., Nazina T., Galushko A. 1988; A new genus of sulfate-reducing bacteria and the description of its new species, Desulfomicrobium apsheronum gen. nov., sp. nov. Microbiology (Engl. Transl. Mikrobiologiya) 57:634–641
    [Google Scholar]
  35. Rozanova E. P., Pivovarova T. A. 1988; Reclassification of Desulfovibrio thermophilus. Microbiology (Engl. Transl. Mikrobiologiya) 57:85–89
    [Google Scholar]
  36. Therene M. 1989 Ph.D. thesis Université Paris VI; Paris:
  37. Trudinger P. A. 1970; Carbon-monoxide-reacting pigment from Desulfotomaculum nigrificans and its possible relevance to sulfite reduction. J. Bacteriol. 104:158–170
    [Google Scholar]
  38. Trüper H. G. 1969 Bacterial sulfate reduction in the Red Sea hot brines. 263–271 Degens E. T., Ross D. A.ed Hot brines and recent heavy metal deposits in the Red Sea Springer-Verlag; New York:
    [Google Scholar]
  39. White D. C., Davis W. M., Nickels J. S., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia (Berlin) 40:5162
    [Google Scholar]
  40. Woese C. R., Magrum L. J., Fox G. E. 1978; Archaebacteria. J. Mol. Evol. 11:245–252
    [Google Scholar]
  41. Yu I. K., Kawamura F. 1987; Halomethanococcus doii gen. nov., sp. nov.: an obligately halophilic methanogenic bacterium from solar salt ponds. J. Gen. Appl. Microbiol. 33:303–310
    [Google Scholar]
  42. Zeikus J. G. 1983; Metabolism communication between biodegradative populations in nature. Symp. Soc. Gen. Microbiol. 34:423–462
    [Google Scholar]
  43. Zeikus J. G., Hegge P. W., Thompson T. E., Phelps T. J., Langworthy T. A. 1983; Isolation and description of Haloanaerobium praevalens gen. nov. and sp. nov., an obligately anaerobic halophile common to Great Salt Lake sediments. Curr. Microbiol. 9:225–234
    [Google Scholar]
  44. Zellner G., Stackebrandt E., Kneifel H., Messner P., Sleytr U. B., Conway de Macario E., Zabel H. P., Stetter K. O., Winter J. 1989; Isolation and characterization of a thermophilic, sulfate reducing archaebacterium, Archaeoglobus fulgidus strain Z. Syst. Appl. Microbiol. 11:151–160
    [Google Scholar]
  45. Zhilina T. N. 1986; Methanogenic bacteria from hypersaline environments. Syst. Appl. Microbiol. 7:216–222
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-41-1-74
Loading
/content/journal/ijsem/10.1099/00207713-41-1-74
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error