1887

Abstract

Sixty rhizobial strains isolated from the root nodules of and in the Sudan were compared with 37 rhizobia isolated from woody legumes in other regions and with 25 representatives of recognized species by performing a numerical analysis of 115 phenotypic characteristics. Nineteen clusters were formed below the boundary level of 0.725 average distance, which was the level that separated the reference and species. Our results indicated that tree rhizobia are very diverse with respect to their cross-nodulation patterns, as well as their physiological and biochemical properties, since 12 of the clusters formed consisted of tree rhizobia alone. Two distinctive features of tree rhizobia isolated in the Sudan were their high maximum growth temperature and their high salt tolerance.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-41-1-104
1991-01-01
2022-10-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/41/1/ijsem-41-1-104.html?itemId=/content/journal/ijsem/10.1099/00207713-41-1-104&mimeType=html&fmt=ahah

References

  1. Alien O. N., Allen E. K. 1936; Root nodule bacteria of some tropical leguminous plants. I. Cross nodulation studies with Vigna sinensis. Soil Sci. 42:61–77
    [Google Scholar]
  2. Allen O. N., Allen E. K. 1939; Root nodule bacteria of some tropical leguminous plants. II. Cross nodulation test with cowpea group. Soil Sci. 47:63–76
    [Google Scholar]
  3. Allen O. N., Allen E. K. 1981 The Leguminosae: a source book of characteristics, uses and nodulation. The University of Wisconsin Press; Madison:
    [Google Scholar]
  4. Basak M. K., Goyal S. K. 1980; Studies on tree legumes. III. Characterization of the symbionts and direct and reciprocal cross inoculation studies with tree legumes and cultivated legumes. Plant Soil 56:39–51
    [Google Scholar]
  5. Beringer J. E. 1974; R factor transfer in Rhizobium leguminosarum. J. Gen. Microbiol. 84:188–198
    [Google Scholar]
  6. Brockman F. J., Bezdicek D. F. 1989; Diversity within serogroups of R. leguminosarum biovar viciae in the palouse region of eastern Washington as indicated by plasmid profiles, intrinsic antibiotic resistance, and topography. Appl. Environ. Microbiol. 55:109–115
    [Google Scholar]
  7. Cubo M. T., Boendia-Claveria M., Beringer J. E., Ruiz-Sainz J. E. 1988; Test for melanin production. Appl. Environ. Microbiol. 54:1812–1813
    [Google Scholar]
  8. Dommergues Y. R., Diem H. G., Gauthier D. L., Dreyfus B. L., Cornet F. 1984; Nitrogen-fixing trees in the tropics: potentialities and limitations. 7–8 Veeger C., Newton W. E.ed Advances in nitrogen fixation researchProceedings of the 5th International Symposium on Nitrogen Fixation. Martinus Nijhoff/Dr W. Junk PublishersWageningen, The Netherlands
    [Google Scholar]
  9. Dreyfus B., Garcia J. L., Gillis M. 1988; Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stemnodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int. J. Syst. Bacteriol. 38:89–98
    [Google Scholar]
  10. Dreyfus B. L., Dommergues Y. R. 1981; Nodulation of Acacia species by fast- and slow-growing tropical strains of Rhizobium. Appl. Environ. Microbiol. 41:97–99
    [Google Scholar]
  11. Felker P., Clark P. R. 1980; Nitrogen fixation (acetylene reduction) and cross inoculation in 12 Prosopis species. Plant Soil 57:177–186
    [Google Scholar]
  12. Graham P. H., Parker C. A. 1964; Diagnostic features in the root nodule bacteria of legumes. Plant Soil 20:383–396
    [Google Scholar]
  13. Habish H. A., Khairi S. M. 1968; Nodulation of legumes in the Sudan: cross-nodulation groups and the associated Rhizobium strains. Exp. Agric. 4:227–234
    [Google Scholar]
  14. Habish H. A., Khairi S. M. 1970; Nodulation of legumes and cross-nodulation of Acacia spp. Exp. Agric. 6:171–176
    [Google Scholar]
  15. Hansen A. P., Pate J. S. 1987; Comparative growth and symbiotic performance of seedlings of Acacia spp. in defined pot culture or as natural understory components of a eucalypt forest ecosystem in SW Australia. J. Exp. Bot. 38:13–25
    [Google Scholar]
  16. Herrera A. M., Bedmar E. J., Olivares J. 1985; Host specificity of Rhizobium strains isolated from nitrogen-fixing trees and nitrogenase activities of strain GRH2 in symbiosis with Prosopis chilensis. Plant Sci. 42:177–182
    [Google Scholar]
  17. Hofer A. W. 1941; A characterization of Bacterium radiobacter. J. Bacteriol. 41:193–224
    [Google Scholar]
  18. Jarvis B. D. W. 1983; Genetic diversity of Rhizobium strains which nodulate Leucaena leucocephala. Curr. Microbiol 8:153–158
    [Google Scholar]
  19. Jenkins B. M., Virginia R. A., Jarrell W. M. 1987; Rhizobial ecology of the woody legume mesquite (Prosopis glandulosa) in the Sonoran desert. Appl. Environ. Microbiol. 53:36–40
    [Google Scholar]
  20. Jordan D. C. 1984 Family III. Rhizobiaceae Conn 1938. 234–244 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  21. Lange R. T. 1961; Nodule bacteria associated with the indigenous Leguminosae of South-West Australia. J. Gen. Microbiol. 61:351–359
    [Google Scholar]
  22. Lindström K. 1984; Analysis of factors affecting in situ nitrogenase activity of Galega orientalis, Trifolium pratense and Medicago sativa in temperate conditions. Plant Soil 79:329–341
    [Google Scholar]
  23. Lindström K. 1984; Effect of various Rhizobium trifolii strains on nitrogenase activity profiles of red clover (Trifolium pratense). Plant Soil 80:79–89
    [Google Scholar]
  24. Lindström K., Lehtomäki S. 1988; Metabolic properties, maximum growth temperature and phage sensitivity of Rhizobium sp. (Galega) compared with other fast growing rhizobia. FEMS Microbiol. Lett. 50:277–287
    [Google Scholar]
  25. Miettinen P., Luukkanen O., Johansson S., Eklund E., Mulatya J. 1988; Rhizobium nodulation in Prosopis juliflora seedlings at different irrigation levels in eastern Kenya. Plant Soil 112:233–238
    [Google Scholar]
  26. National Academy of Sciences 1979 Tropical legumes: resources for the future. National Academy of Sciences; Washington, D.C:
    [Google Scholar]
  27. Niemelä S. L, Mentu J., Väätänen P., Lahti K. 1983; Maximum growth temperature as a diagnostic character in Enterobacteriaceae. INSERM Colloq. 114:619–627
    [Google Scholar]
  28. Roskoski J. P., Wood T. 1984; Nodulation and nitrogen fixation by five species of leguminous trees grown in soil from undisturbed and disturbed tropical sites in Mexico. Adv. Agric. Biotechnol. 4:357
    [Google Scholar]
  29. Shoushtari N. H., Pepper I. L. 1985; Mesquite rhizobia isolated from the Sonoran desert: physiology and effectiveness. Soil Biol. Biochem. 17:797–802
    [Google Scholar]
  30. Trinick M. J. 1965; Medicago sativa nodulation with Leucaena leucocephala root-nodule bacteria. Aust. J. Sci. 27:263–264
    [Google Scholar]
  31. Trinick M. J. 1980; Relationships amongst the fast-growing rhizobia of Lablab purpureus, Leucaena leucocephala, Mimosa spp., Acacia farnesiana and Sesbania grandiflora and their affinities with other rhizobia groups. J. Appl. Bacteriol. 49:3953
    [Google Scholar]
  32. Vincent J. M. 1970 A manual of the practical study of rootnodule bacteria. International Biological Program handbook 15 Blackwell Scientific Publications; Oxford:
    [Google Scholar]
  33. Young J. P. W. 1985; Rhizobium population genetics: enzyme polymorphism in isolates from peas, clover, beans and lucerne grown at the same site. J. Gen. Microbiol. 131:2399–2408
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-41-1-104
Loading
/content/journal/ijsem/10.1099/00207713-41-1-104
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error