1887

Abstract

and are inappropriately assigned to the genus . They belong to the acidovorans rRNA complex in rRNA superfamily III (i.e., the beta subclass of the ). The taxonomic relationships of both of these species, two groups of clinical isolates (E. Falsen [EF] group 13 and EF group 16), and several unidentified or presently misnamed strains were examined by using DNA:rRNA hybridization, numerical analyses of biochemical and auxanographic features and of fatty acid patterns, polyacrylamide gel electrophoresis of cellular proteins, and DNA:DNA hybridization. These organisms form a separate group within the acidovorans rRNA complex, and we propose to transfer them to a new genus, . We describe the following three species in this genus: The type species, (formerly ), with type strain LMG 2193 (= CCUG 2113 = ATCC 11228); (for the former and most of the EF group 13 strains), with type strain LMG 5943 (= CCUG 1779 = ATCC 17505); and (for several former and strains and most of the EF group 16 strains), with type strain CCUG 11779 (= LMG 7169).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-40-4-384
1990-10-01
2024-07-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/40/4/ijsem-40-4-384.html?itemId=/content/journal/ijsem/10.1099/00207713-40-4-384&mimeType=html&fmt=ahah

References

  1. Auling G., Dittbrenner M., Maarzahl M., Nokhal T., Reh M. 1980; Deoxyribonucleic acid relationships among hydrogen-oxidizing strains of the genera Pseudomonas, Alcaligenes, and Paracoccus.. Int. J. Syst. Bacteriol. 30:123–128
    [Google Scholar]
  2. Auling G., Probst A., Kroppenstedt R. M. 1986; Chemo- and molecular taxonomy of D(-)-tartrate-utilizing pseudomonads. Syst. Appl. Microbiol. 8:114–120
    [Google Scholar]
  3. Byng G. S., Johnson J. L., Whitaker R. J., Gherna R. L., Jensen R. A. 1983; The evolutionary pattern of aromatic amino acid biosynthesis and the emerging phylogeny of pseudomonad bacteria. J. Mol. Evol. 19:272–282
    [Google Scholar]
  4. Davis D. H., Doudoroff M., Stanier R. Y., Mandel M. 1969; Proposal to reject the genus Hydrogenomonas-. taxonomic implications. Int. J. Syst. Bacteriol. 19:375–390
    [Google Scholar]
  5. Davis D. H., Stanier R. Y., Doudoroff M., Mandel M. 1970; Taxonomic studies on some Gram negative polarly flagellated “hydrogen bacteria” and related species. Arch. Mikrobiol. 70:1–13
    [Google Scholar]
  6. Delafield F. P., Doudoroff M., Palleroni N. J., Lusty C. J., Contopoulos R. 1965; Decomposition of poly-fi-hydroxybutyrate by pseudomonads. J. Bacteriol. 90:1455–1466
    [Google Scholar]
  7. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101:738–754
    [Google Scholar]
  8. De Ley J. 1978 Modem molecular methods in bacterial taxonomy: evaluation, application, prospects. 347–357 Proceedings of the 4th International Conference of Plant Pathogenic Bacteria 1 Gibert-Clarey; Tours, France:
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  10. De Ley J., De Smedt J. 1975; Improvements of the membrane filter method for DNA:rRNA hybridization. Antonie van Leeuwenhoek J. Microbiol. Serol. 41:287–307
    [Google Scholar]
  11. De Ley J., Van Muylem J. 1963; Some applications of deoxyribonucleic acid base composition in bacterial taxonomy. Antonie van Leeuwenhoek J. Microbiol. Serol. 29:344–358
    [Google Scholar]
  12. De Vos P., De Ley J. 1983; Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 33:487–509
    [Google Scholar]
  13. De Vos P., Goor M., Gillis M., De Ley J. 1985; Ribosomal ribonucleic acid cistron similarities of phytopathogenic Pseudomonas species. Int. J. Syst. Bacteriol. 35:169–184
    [Google Scholar]
  14. De Vos P., Kersters K., Falsen E., Pot B., Gillis M., Segers P., De Ley J. 1985; Comamonas Davis and Park 1962 gen. nov, nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int. J. Syst. Bacteriol. 35:443–453
    [Google Scholar]
  15. De Vos P., Van Landschoot A., Segers P., Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B., Kersters K., Lizzaraga P., De Ley J. 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and PseudomonasAike strains by deoxyribonucleic acidiribosomal ribonucleic acid hybridizations. Int. J. Syst. Bacteriol. 39:35–49
    [Google Scholar]
  16. Falsen E. 1983 Immunodiffusion as an aid in routine identification of uncommon aerobic gram negative bacteria. 477–483 Leclerc H.ed Gram negative bacteria of medical and public health importance: taxonomy-identification-applications Les éditions de ITnstitut National de la Santé et de la Recherche Médicale; Paris:
    [Google Scholar]
  17. Falsen E. 1989 Catalogue of strains. Culture Collection. University of Göteborg, Göteborg; Sweden:
    [Google Scholar]
  18. Ferragut C., Kersters K., De Ley J. 1989; Protein electrophoretic and DNA homology analysis of Klebsiella strains. Syst. Appl. Microbiol. 11:121–127
    [Google Scholar]
  19. Gavini F., Holmes B., Izard D., Beji A., Bernigaud A., Jakubczak E. 1989; Numerical taxonomy of Pseudomonas alcaligenes, P. pseudoalcaligenes, P. mendocina, P. stutzeri, and related bacteria. Int. J. Syst. Bacteriol. 39:135–144
    [Google Scholar]
  20. Gerstenberg C., Friedrich B., Schlegel H. G. 1982; Physical evidence for plasmids in autotrophic, especially hydrogenoxidizing bacteria. Arch. Microbiol. 133:90–96
    [Google Scholar]
  21. Gilardi G. L. 1985 Pseudomonas,. 350–372 Lennette E. H., Balows A., Hausler W. J. Jr., Shadomy H. J.ed Manual of clinical microbiology, 4th ed.. American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  22. Jantzen E., Bryn K. 1985 Whole-cell and lipopolysaccharide fatty acids and sugars of gram-negative bacteria. 145171 Goodfellow M., Minnikin D.ed Chemical methods in bacterial systematics Academic Press, Inc.; New York:
    [Google Scholar]
  23. Jantzen E., Bryn K., Hagen N., Bergan T., Bpvre K. 1978; Fatty acids and monosaccharides of Neisseriaceae in relation to established taxonomy. Natl. Inst. Public Health Ann. (Norway) 1:59–71
    [Google Scholar]
  24. Jantzen E., Kvalheim O. M., Hauge T. A., Hagen N., Bpvre K. 1987; Grouping of bacteria by SIMCA pattern recognition on gas chromatographic lipid data: patterns among Moraxella and rod-shaped Neisseria.. Syst. Appl. Microbiol. 9:142150
    [Google Scholar]
  25. Johnson J. L., Palleroni N. J. 1989; Deoxyribonucleic acid similarities among Pseudomonas species. Int. J. Syst. Bacteriol. 39:230–235
    [Google Scholar]
  26. Kersters K., De Ley J. 1984 Genus Alcaligenes Castellani and Chalmers 1919. 361–373 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  27. Kersters K., Hinz K.-H., Hertle A., Segers P., Lievens A., Siegmann O., De Ley J. 1984; Bordetella avium sp. nov., isolated from the respiratory tracts of turkeys and other birds. Int. J. Syst. Bacteriol. 34:56–70
    [Google Scholar]
  28. Kiredjian M., Holmes B., Kersters K., Guilvout I., De Ley J. 1986; Alcaligenes piechaudii, a new species from human clinical specimens and the environment. Int. J. Syst. Bacteriol. 36:282–287
    [Google Scholar]
  29. Kiredjian M., Popoff M., Coynault C., Lefèvre M., Lemelin M. 1981; Taxonomie du genre Alcaligenes.. Ann. Microbiol. (Inst. Pasteur) 132B:337–374
    [Google Scholar]
  30. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  31. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  32. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  33. Mayberry W. R. 1981; Dihydroxy and monohydroxy fatty acids in Legionella pneumophila.. J. Bacteriol. 147:373–381
    [Google Scholar]
  34. Meyer O., Schlegel H. G. 1978; Reisolation of the carbon monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans (Kistner) comb. nov.. Arch. Microbiol. 118:35–43
    [Google Scholar]
  35. Owen R. J., Morgan D. D., Costas M., Lastovica A. 1989; Identification of “Campylobacter upsaliensis” and other catalase-negative Campylobacters from pediatric blood cultures by numerical analysis of electrophoretic protein patterns. FEMS Microbiol. Lett. 58:145–150
    [Google Scholar]
  36. Palleroni N. J. 1984 Genus I. Pseudomonas Migula 1894. 141–199 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  37. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas.. Int. J. Syst. Bacteriol. 23:333–339
    [Google Scholar]
  38. Pootjes C. F. 1977; Evidence for plasmid coding of the ability to utilize hydrogen gas by Pseudomonas delafieldii.. Biochem. Biophys. Res. Commun. 76:1002–1006
    [Google Scholar]
  39. Pot B., Gillis M., Hoste B., Van De Velde A., Bekaert F., Kersters K., De Ley J. 1989; Intra- and intergeneric relationships of the genus Oceanospirillum.. Int. J. Syst. Bacteriol. 39:23–34
    [Google Scholar]
  40. Ralston E., Palleroni N. J., Doudoroff M. 1972; Deoxyribonucleic acid homologies of some so-called “ Hydrogenomonas” species. J. Bacteriol. 109:465–466
    [Google Scholar]
  41. Reinhold B., Hurek T., Fendrik I., Pot B., Gillis M., Kersters K., Thielemans S., De Ley J. 1987; Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with the roots of Kallar grass (Leptochloa fusca (L.) Kunth). Int. J. Syst. Bacteriol. 37:43–51
    [Google Scholar]
  42. Rode H., Giffhorn F. 1982; Ferrous- or cobalt ion-dependent d-(-)-tartrate dehydratase of pseudomonads: purification and properties. J. Bacteriol. 151:1602–1604
    [Google Scholar]
  43. Rossau R., Kersters K., Falsen E., Jantzen E., Segers P., Union A., Nehls L., De Ley J. 1987; Oligella, a new genus including Oligella urethralis comb. nov. (formerly Moraxella urethralis) tand Oligella ureolytica sp. nov. (formerly CDC group IVe): relationship to Taylorella equigenitalis and related taxa. Int. J. Syst. Bacteriol. 37:198–210
    [Google Scholar]
  44. Schatz A., Bovell C. Jr. 1952; Growth and hydrogenase activity of a new bacterium, Hydrogenomonas facilis.. J. Bacteriol. 63:87–98
    [Google Scholar]
  45. Schneider K., Schlegel H. G. 1977; Localization and stability of hydrogenases from aerobic hydrogen bacteria. Arch. Microbiol. 112:229–238
    [Google Scholar]
  46. Sly L. I. 1984; The use of disposable gas generating kits for the growth of hydrogen-oxidizing bacteria and the determination of hydrogen autotrophy. J. Microbiol. Methods 3:7–14
    [Google Scholar]
  47. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy. The principles and practice of numerical classification. W. H. Freeman and Co.; San Francisco:
    [Google Scholar]
  48. Stackebrandt E., Murray R. G. E., Triiper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.”. Int. J. Syst. Bacteriol. 38:321–325
    [Google Scholar]
  49. Swings J., Kersters K., De Ley J. 1976; Numerical analysis of electrophoretic protein patterns of Zymomonas strains. J. Gen. Microbiol. 93:266–271
    [Google Scholar]
  50. Tamaoka J., Ha D.-M., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb, nov., with an emended description of the genus Comamonas.. Int. J. Syst. Bacteriol. 37:52–59
    [Google Scholar]
  51. Van Landschoot A., De Ley J. 1983; Intra- and intergeneric similarities of the rRNA cistrons of Alteromonas, Marinomonas (gen. nov.) and some other Gram-negative bacteria. J. Gen. Microbiol. 129:3057–3074
    [Google Scholar]
  52. Warrelmann J., Friedrich B. 1986; Mutants of Pseudomonas facilis defective in lithoautotrophy. J. Gen. Microbiol. 132:91–96
    [Google Scholar]
  53. Willems A., Busse J., Goor M., Pot B., Falsen E., Jantzen E., Hoste B., Gillis M., Kersters K., Auling G., De Ley J. 1989; Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis).. Int. J. Syst. Bacteriol. 39:319–333
    [Google Scholar]
  54. Willems A., Gillis M., Kersters K., Van den Broecke L., De Ley J. 1987; Transfer of Xanthomonas ampelina Panagopoulos 1969 to a new genus, Xylophilus gen. nov., as Xylophilus ampelinus (Panagopoulos 1969) comb. nov.. Int. J. Syst. Bacteriol. 37:422–430
    [Google Scholar]
  55. Wishart D. 1978 Clustan user manual. , 3rd ed.. Program Library Unit; Edinburgh University, Edinburgh:
    [Google Scholar]
  56. Woese C. R. 1987; Bacterial evolution. Microbiol Rev. 51:221–271
    [Google Scholar]
  57. Wold S., Albano C., Dunn W. J. III, Edlund U., Esbensen K., Geladi P., Hellberg S., Johanson S., Lindberg W., Sjöström M. 1984 Multivariate data analyses in chemistry. 17–95 Kowalsky B. R.ed Chemometrics, mathematics and statistics in chemistry Reidel, Dordrecht; The Netherlands:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-40-4-384
Loading
/content/journal/ijsem/10.1099/00207713-40-4-384
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error