1887

Abstract

DNA hybridization and extracellular-polysaccharide (EPS) analyses were performed for 19 strains of and six strains of , and . Both methods showed that these strains constitute a heterogeneous group of bacteria, and both methods sorted the strains into related groups. As determined by DNA analysis, 20 strains formed five separate groups of closely related bacteria. Nine of these strains were closely related to two previously established groups of . These two groups, group 1 and group 3, contain 11 and 8 strains, respectively, and could represent new species. The type strain of , an isolate from human feces, was closely related genetically to five of the strains presently identified as , which were isolated from rumina of bison. The groups formed by EPS analysis were similar to those formed by DNA analysis. Our data suggest that for some groups of microorganisms EPS analysis may be a useful adjunct to DNA analysis to clarify complex taxonomic relationships.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-40-4-370
1990-10-01
2024-07-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/40/4/ijsem-40-4-370.html?itemId=/content/journal/ijsem/10.1099/00207713-40-4-370&mimeType=html&fmt=ahah

References

  1. Albersheim P., Nevins D. J., English P. D., Karr A. 1967; A method for the analysis of sugars in plant cell wall polysaccharides by gas-liquid chromatography. Carbohydr. Res. 5:340–345
    [Google Scholar]
  2. Bartnicki-Garcia S. 1968; Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu. Rev. Microbiol. 22:87–108
    [Google Scholar]
  3. Brenner D. J. 1973; Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. Int. J. Syst. Bacteriol. 23:298307
    [Google Scholar]
  4. Bryant M. P., Small N. 1956; Characteristics of two new genera of anaerobic curved rods isolated from the rumen of cattle. J. Bacteriol. 72:22–26
    [Google Scholar]
  5. Bryant M. P., Small N. 1956; The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen. J. Bacteriol. 72:16–21
    [Google Scholar]
  6. Cotta M. A., Hespell R. B. 1986; Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens.. Appl. Environ. Microbiol. 52:51–58
    [Google Scholar]
  7. Dehority B. A. 1966; Characterization of several bovine rumen bacteria isolated with a xylan medium. J. Bacteriol. 91:17241729
    [Google Scholar]
  8. Dehority B. A. 1969; Pectin-fermenting bacteria isolated from the bovine rumen. J. Bacteriol. 99:189–196
    [Google Scholar]
  9. Dehority B. A. 1975 Characterization studies on rumen bacteria isolated from Alaskan reindeer (Rangifer taradus L.). 228–240 Luick J. R., Lent P. C., Klein D. R., White R. G.ed Proceedings of the First International Reindeer and Caribou Symposium University of Alaska; Fairbanks:
    [Google Scholar]
  10. Dehority B. A., Grubb J. A. 1977; Characterization of the predominant bacteria occurring in the rumen of goats (Capra hircus).. Appl. Environ. Microbiol. 33:1030–1036
    [Google Scholar]
  11. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Microbiol. 12:133–142
    [Google Scholar]
  12. Hazlewood G. P., Theodorou M. K., Hutchings A., Jordan D. J., Galfre G. 1986; Preparation and characterization of monoclonal antibodies to a Butyrivibrio sp. and their potential use in the identification of rumen butyrivibrios, using an enzyme-linked immunosorbent assay. J. Gen. Microbiol. 132:43–52
    [Google Scholar]
  13. Hespell R. B., Wolf R., Bothast R. J. 1988; Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacterial species. Appl. Environ. Microbiol. 53:2849–2853
    [Google Scholar]
  14. Johnson J. L. 1973; Use of nucleic acid homologies in the taxonomy of anaerobic bacteria. Int. J. Syst. Bacteriol. 23:308–315
    [Google Scholar]
  15. Mannarelli B. M. 1988; Deoxyribonucleic acid relatedness among strains of the species Butyrivibrio fibrisolvens.. Int. J. Syst. Bacteriol. 38:340–347
    [Google Scholar]
  16. Margherita S. S., Hungate R. E. 1963; Serological analysis of Butyrivibrio from the bovine rumen. J. Bacteriol. 86:855–860
    [Google Scholar]
  17. Moore W. E. C., Holdeman L. V. 1974; Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl. Microbiol. 27:961–979
    [Google Scholar]
  18. Moore W. E. C., Johnson J. L., Holdeman L. V. 1976; Emendation of Bacteriodaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfbmonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus.. Int. J. Syst. Bacteriol. 26:238–252
    [Google Scholar]
  19. Nakamura L. K., Swezey J. 1983; Taxonomy of Bacillus circulans Jordan 1890: base composition and reassociation of deoxyribonucleic acid. Int. J. Syst. Bacteriol. 33:46–52
    [Google Scholar]
  20. Orpin C. G., Mathiesen S. D., Greenwood Y., Blix A. S. 1985; Seasonal changes in the ruminal microflora of the high-artic Svaldbard reindeer (Rangifer tarandus platyrhynchus).. Appl. Environ. Microbiol. 50:144–151
    [Google Scholar]
  21. Robinson I. M., Allison M. J., Bucklin J. 1981; Characterization of the cecal bacteria of normal pigs. Appl. Environ. Microbiol. 41:950–955
    [Google Scholar]
  22. Schildkraut C. L., Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol. 4:430–433
    [Google Scholar]
  23. Sewell G. W., Aldrich H. C., Williams D., Mannarelli B., Wilkie A., Hespell R. B., Smith P. H., Ingram L. O. 1988; Isolation and characterization of xylan-degrading strains of Butyrivibrio fibrisolvens from a napier grass-fed anaerobic digester. Appl. Environ. Microbiol. 54:1085–1090
    [Google Scholar]
  24. Shane B. S., Gouws L., Kistner A. 1969; Cellulolytic bacteria occurring in the rumen of sheep conditioned to low-protein teff hay. J. Gen. Microbiol. 55:445–457
    [Google Scholar]
  25. Sharpe M. E., Brock J. H., Phillips B. A. 1975; Glycerol techoic acid as an antigenic determinant in a gram-negative bacterium, Butyrivibrio fibrisolvens.. J. Gen. Microbiol. 88:355–363
    [Google Scholar]
  26. Slodki M. E., Wickerham L. J. 1966; Extracellular polysaccharides and classification of the genus Lipomyces.. J. Gen. Microbiol. 42:381–385
    [Google Scholar]
  27. Sokal R. R., Michener C. D. 1958; A statistical method for evaluating systematic relationships. Univ. Kans. Sci Bull. 38:1409–1438
    [Google Scholar]
  28. Stack R. J. 1987; Identification of l-altrose in the extracellular polysaccharide from Butyrivibrio fibrisolvens strain CF3. FEMS Microbiol. Lett. 48:83–87
    [Google Scholar]
  29. Stack R. J. 1988; Neutral sugar composition of extracellular polysaccharides produced by strains of Butyrivibrio fibrisolvens.. Appl. Environ. Microbiol. 54:878–883
    [Google Scholar]
  30. Stack R. J., Steain T. M., Plattner R. D. 1988; 4-O-(l-carboxyethyl)-d-galactose. A new acidic sugar from the extracellular polysaccharide produced by Butyrivibrio fibrisolvens strain 49. Biochem. J. 256:769–773
    [Google Scholar]
  31. Stanton T. D., Savage D. C. 1983; Roseburia cecicola gen. nov., sp. nov., a motile, obligately anaerobic bacterium from a mouse cecum. Int. J. Syst. Bacteriol. 33:618–627
    [Google Scholar]
  32. Sutherland I. W. 1985; Biosynthesis and composition of gramnegative bacterial extracellular and wall polysaccharides. Annu. Rev. Microbiol. 39:243–270
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-40-4-370
Loading
/content/journal/ijsem/10.1099/00207713-40-4-370
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error