1887

Abstract

Three strains of gram-positive, facultatively anaerobic, sporeforming, rod-shaped bacteria were isolated from composts of manure with grass and rice straw. These organisms grew well in an alkaline medium and digested xylan both in strictly anaerobic cultures when titanium(III) citrate was used as a reducing agent and in aerobic cultures with shaking. The cells contained -diaminopimelic acid, and their cellular fatty acids consisted of iso- and anteiso-branched acids and considerable amounts of straight-chain acids. The DNA base composition of these strains ranged from 36 to 38 mol% guanine plus cytosine. Cytochromes, isoprenoid quinones, and catalase activity were not detected. DNA-DNA homology determinations did not show relatedness to strains of representative species of the genera , and . Considering the uniqueness of the characteristics, the sequence of the 5S rRNA, and the unique metabolic pathways, we propose gen. nov., sp. nov., for these strains. The type strain is strain Ep01 (= JCM 7361).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-40-3-297
1990-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/40/3/ijsem-40-3-297.html?itemId=/content/journal/ijsem/10.1099/00207713-40-3-297&mimeType=html&fmt=ahah

References

  1. Elsden S. R., Hilton M. G., Parsley K. R., Self R. 1980; The lipid fatty acids of proteolytic clostridia. J. Gen. Microbiol. 118:115–123
    [Google Scholar]
  2. Gottshalk G., Andressen J. R., Hippe H. 1981 The genus Clostridium (nonmedical aspects). 1767–1803 Starr M. P. et al.ed The prokaryotes, a handbook on habitats, isolation, and identification of bacteria Springer-Verlag; Berlin:
    [Google Scholar]
  3. Holdeman L. V., Cato E. P., Moore W. E. C.ed 1977 Anaerobe laboratory manual. , 4th ed.. Virginia Polytechnic Institute and State University; Blacksburg:
    [Google Scholar]
  4. Ikemoto S., Suzuki K., Kaneko T., Komagata K. 1980; Characterization of strains of Pseudomonas maltophilia which do not require methionine. Int. J. Syst. Bacteriol. 30:437–447
    [Google Scholar]
  5. Kaneko T., Nozaki R., Aizawa K. 1978; Deoxyribonucleic acid relatedness between Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Microbiol. Immunol. 22:639–641
    [Google Scholar]
  6. Komagata K. 1984 Bacteria, part 1. 99–161 Hasegawa T.ed Microbial classification and identification Gakkai Shuppan Center; Tokyo: (In Japanese.)
    [Google Scholar]
  7. Komagata K., Suzuki K. 1987 Lipid and cell-wall analysis in bacterial systematics. 161–207 Colwell R. R., Grigorova R.ed Methods in microbiology 19 Academic Press; Inc. (London), Ltd., London:
    [Google Scholar]
  8. Marotta C. A., Varricchio F., Smith I., Weissmann S. M. 1976; The primary structure of Bacillus subtilis and Bacillus stearothermophilus 5S ribosomal nucleic acids. J. Biol. Chern. 251:3122–3127
    [Google Scholar]
  9. Niimura Y., Koh E., Uchimura T., Ohara N., Kozaki M. 1989; Aerobic and anaerobic metabolism in a facultative anaerobe EpOl lacking cytochrome, quinone and catalase. FEMS Microbiol. Lett. 61:79–84
    [Google Scholar]
  10. Niimura Y., Yanagida F., Uchimura T., Ohara N., Suzuki K., Kozaki M. 1987; A new facultative anaerobic xylan-using alkalophile lacking cytochrome, quinone, and catalase. Agric. Biol. Chern. 51:2271–2275
    [Google Scholar]
  11. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36:407–477
    [Google Scholar]
  12. Smart J. B., Thomas T. D. 1987; Effect of oxygen on lactose metabolism in lactic streptococci. Appl. Environ. Microbiol. 53:533–541
    [Google Scholar]
  13. Sneath P. H. A. 1986 Endospore-forming gram-positive rods and cocci. 1104–1207 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  14. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycètes by thin-layer chromatography. Appl. Microbiol. 28:226–231
    [Google Scholar]
  15. Suzuki K., Komagata K. 1983; Taxonomic significance of cellular fatty acid composition in some coryneform bacteria. Int. J. Syst. Bacteriol. 33:188–200
    [Google Scholar]
  16. Yanagida F., Hori H., Suzuki K., Kozaki M., Komagata K. 1988; Nucleotide sequence of 5S ribosomal RNAs from sporeforming lactic acid bacteria and Lactobacillus plant arum. Nucleic Acids Res. 16:10938
    [Google Scholar]
  17. Yanagida F., Niimura Y., Koh E., Suzuki K., Kozaki M., Komagata K. 1989; Nucleotide sequence of 5S ribosomal RNAs of “Amphibacillus xylanus” and Clostridium carnis. Nucleic Acids Res. 17:443
    [Google Scholar]
  18. Yanagida F., Suzuki K., Kaneko T., Kozaki M., Komagata K. 1987; Deoxyribonucleic acid relatedness among some spore-forming lactic acid bacteria. J. Gen. Appl. Microbiol. 33:47–55
    [Google Scholar]
  19. Zehnder A. J. B., Wuhrmann K. 1976; Titanium (III) citrate as a non-toxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194:1165–1166
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-40-3-297
Loading
/content/journal/ijsem/10.1099/00207713-40-3-297
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error