1887

Abstract

Two methylamine- and -dimethylformamide-utilizing spp. are described. These bacteria are gram-negative, nonsporeforming, nonmotile, coccoid or short rod-shaped organisms. Their DNA base composition is 62 to 68 mol% G+C. Their cellular fatty acids include large amounts of C acid. Their major hydroxy acids are 3-OH C and 3-OH C acids. The major ubiquinone is Q-10. These bacteria are distinguished from and by physiological characteristics and by DNA-DNA homology. sp. nov. and sp. nov. are proposed. The type strain of is DM-15 (= JCM 7686), and the type strain of is DM-82 (= JCM 7685). is distinguished from other species on the basis of cellular fatty acid composition, hydroxy fatty acid composition, and DNA-DNA homology. It may not be a valid member of the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-40-3-287
1990-07-01
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/40/3/ijsem-40-3-287.html?itemId=/content/journal/ijsem/10.1099/00207713-40-3-287&mimeType=html&fmt=ahah

References

  1. Bohacek J., Kocur M., Martinec T. 1967; DNA base composition and taxonomy of some micrococci. J. Gen. Microbiol. 46:369–376
    [Google Scholar]
  2. Burdon K. L. 1946; Fatty material in bacteria and fungi revealed by staining dried, fixed slide preparations. J. Bacteriol. 52:665–678
    [Google Scholar]
  3. Davis D. H., Doudoroff M., Stanier R. Y. 1969; Proposal to reject the genus Hydrogenomonas-. taxonomic implications. Int. J. Syst. Bacteriol. 19:375–390
    [Google Scholar]
  4. Girard A. E. 1971; A comparative study of the fatty acids of some micrococci. Can. J. Microbiol. 17:1503–1508
    [Google Scholar]
  5. Gisalba O., Cevey P., Kuenzi M., Schar H.-P. 1985; Biodegradation of chemical waste by specialized methylotrophs, an alternative to physical methods of waste disposal. Conserv. & Recycl. 8:47–71
    [Google Scholar]
  6. Kaneko T., Nozaki R., Aizawa K. 1978; Deoxyribonucleic acid relatedness between Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Microbiol. Immunol. 22:639–641
    [Google Scholar]
  7. Kocur M. 1984 Genus Paracoccus Davis 1969, 384AL. 399–402 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  8. Kocur M., Martinec T., Mazanec K. 1968; Fine structure of Micrococcus denitrificans and M. halodenitrificans in relation to their taxonomy. Antonie van Leeuwenhoek J. Microbiol. Serol. 34:19–26
    [Google Scholar]
  9. Litchfield J. H. 1977; Comparative technical and economic aspects of single-cell protein processes. Adv. Appl. Microbiol. 22:267–305
    [Google Scholar]
  10. Quayle J. R. 1972; The metabolism of one-carbon compounds by micro-organisms. Adv. Microb. Physiol. 7:119–203
    [Google Scholar]
  11. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 72:619–629
    [Google Scholar]
  12. Skerman V. B. D., McGowan V., Sneath P. H. A.ed 1980 Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30:225–420
    [Google Scholar]
  13. Smith N. R., Gordon R. E., Clark F. E. 1952 Aerobic sporeforming bacteria. Agricultural monograph no. 16. U.S. Department of Agriculture; Washington, D.C:
    [Google Scholar]
  14. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25:125–128
    [Google Scholar]
  15. Urakami T., Komagata K. 1984; Protomonas, a new genus of facultatively methylotrophic bacteria. Int. J. Syst. Bacteriol. 34:188–201
    [Google Scholar]
  16. Urakami T., Komagata K. 1986; Occurrence of isoprenoid compounds in gram-negative methanol-, methane-, and methylamine-utilizing bacteria. J. Gen. Appl. Microbiol. 32:317–341
    [Google Scholar]
  17. Urakami T., Komagata K. 1986; Methanol-utilizing Ancylobacter strains and comparison of their cellular fatty acid composition and quinone systems with those of Spirosoma, Flectobacillus, and Runella species. Int. J. Syst. Bacteriol. 36:415–421
    [Google Scholar]
  18. Urakami T., Komagata K. 1986; Emendation of Methylobacillus Yordy and Weaver 1977, a genus for methanol-utilizing bacteria. Int. J. Syst. Bacteriol. 36:502–511
    [Google Scholar]
  19. Urakami T, Komagata K. 1987; Cellular fatty acid composition with special reference to the existence of hydroxy fatty acids in gram-negative methanol-, methane-, and methylamine-utilizing bacteria. J. Gen. Appl. Microbiol. 33:135–165
    [Google Scholar]
  20. Urakami T., Komagata K. 1987; Characterization of species of marine methylotrophs of the genus Methylophaga. Int. J. Syst. Bacteriol. 37:402–406
    [Google Scholar]
  21. Urakami T., Tamaoka J., Komagata K. 1985; DNA base composition and DNA-DNA homologies of methanol-utilizing bacteria. J. Gen. Appl. Microbiol. 31:243–253
    [Google Scholar]
  22. Urakami T., Tamaoka J., Suzuki K., Komagata K. 1989; Paracoccus alcaliphilus sp. nov., an alkaliphilic and facultatively methylotrophic bacterium. Int. J. Syst. Bacteriol. 39:116–121
    [Google Scholar]
  23. Urakami T., Yano I. 1989; Methanol-utilizing Mycobacterium strains isolated from soils. J. Gen. Appl. Microbiol. 35:125–133
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-40-3-287
Loading
/content/journal/ijsem/10.1099/00207713-40-3-287
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error