1887

Abstract

An anaerobic, mesophilic, spore-forming, cellulolytic bacterium was repeatedly isolated from a wood-fermenting anaerobic digester. Cells of this organism were gram-positive rods, motile with a bundle of polar flagella, and formed subterminal oblong spores. The colonies in agar had an irregular shape with many platelike structures and were greyish white. Cellulose, xylan, and cellobiose served as substrates for growth. Acetate, propionate, butyrate, isobutyrate, isovalerate, lactate, succinate, H, and CO were products of cellobiose fermentation. The optimal temperature and pH for growth were 35°C and 7, respectively. The DNA composition was 40 mol% G+C. The name sp. nov. is proposed. The type strain is P-1 (= OGI 112, = ATCC 49358).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-40-3-268
1990-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/40/3/ijsem-40-3-268.html?itemId=/content/journal/ijsem/10.1099/00207713-40-3-268&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: réévaluation of a unique biological group. Microbiol. Rev. 43:260–296
    [Google Scholar]
  2. Carlone G. M., Valadez M. J., Pickett M. J. 1983; Methods for distinguishing gram-positive from gram-negative bacteria. J. Clin. Microbiol. 16:1157–1159
    [Google Scholar]
  3. Cato E. P., George W. L., Finegold S. M. 1986 Genus Clostridium Prazmowski 1880, 23AL. 1141–1200 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  4. Chynoweth D. P., Jerger D. E. 1985; Anaerobic digestion of woody Biomass. Dev. Ind. Microbiol. 265:235–246
    [Google Scholar]
  5. Halebian S., Harris B., Finegold S. M., Rolfe R. D. 1981; Rapid method that aids in distinguishing gram-positive from gram-negative anaerobic bacteria. J. Clin. Microbiol. 13:444–448
    [Google Scholar]
  6. Holdeman L. V., Cato E. P., Moore W. E. C.ed 1977 Anaerobe laboratory manual. , 4th ed.. Virginia Polytechnic Institute and State University; Blacksburg:
    [Google Scholar]
  7. Hungate R. E. 1969 A roll tube method for cultivation of strict anaerobes. 117–132 Norris J. R., Ribbons D. W.ed Methods in microbiology 3B Academic Press, Inc.; New York:
    [Google Scholar]
  8. Hungate R. E. 1950; The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev. 14:1–49
    [Google Scholar]
  9. Jerger D. E., Novil M., Chynoweth D. P. 1982; Bioconversion of woody biomass as a renewable source of energy. Biotechnol. Bioeng. Symp. 12:233–248
    [Google Scholar]
  10. Kelly W. J., Asmundson R. V., Hoperoft D. H. 1987; Isolation and characterization of a strictly anaerobic, cellulolytic spore former: Clostridium chartatabidum sp. nov. Arch. Microbiol. 147:169–173
    [Google Scholar]
  11. Leschine S. B., Canale-Parola E. 1983; Mesophilic cellulolytic clostridia from freshwater environments. Appl. Environ. Microbiol. 46:728–737
    [Google Scholar]
  12. Madden R. H., Bryder M. J., Poole N. J. 1982; Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium papyrosolvens sp. nov. Int. J. Syst. Bacteriol. 32:87–91
    [Google Scholar]
  13. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  14. Palop M. L., Valles S., Pinaga F., Flors A. 1989; Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium celerecrescens sp. nov. Int. J. Syst. Bacteriol. 39:68–71
    [Google Scholar]
  15. Petitdemange E., Caillet F., Giallo J., Gaudin C. 1984; Clostridium cellulolyticum sp. nov., a cellulolytic, mesophilic species from decayed grass. Int. J. Syst. Bacteriol. 34:155–159
    [Google Scholar]
  16. Preston J. F., Boone D. R. 1972; Analytical determination of the buoyant density of DNA in acrylamide gels after preparative CsCl gradient centrifugation. FEBS Lett. 37:321–324
    [Google Scholar]
  17. Schildkraut C. L., Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol. 4:430–443
    [Google Scholar]
  18. Sleat R., Mah R. A. 1985; Clostridium populeti sp. nov., a cellulolytic species from a woody-biomass digester. Int. J. Syst. Bacteriol. 35:160–163
    [Google Scholar]
  19. Sleat R., Mah R. A., Robinson R. 1984; Isolation and characterization of an anaerobic, cellulolytic Bacterium, Clostridium cellulovorans sp. nov. Appl. Environ. Microbiol. 48:88–93
    [Google Scholar]
  20. van Gylswyk N. O. 1980; Fusobacterium polysaccharolyticum sp. nov., a gram negative rod from the rumen that produces butyrate and ferments cellulose and starch. J. Gen. Microbiol. 116:157–163
    [Google Scholar]
  21. van Gylswyk N. O., Morris E. J., Els H. J. 1980; Sporulation and cell wall structure of Clostridium polysaccharolyticum comb. nov. (formerly Fusobacterium polysaccharolyticum). J. Gen. Microbiol. 121:491–493
    [Google Scholar]
  22. Zeikus J. G., Ward J. C. 1974; Methane formation in living trees: a microbial origin. Science 184:1181–1183
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-40-3-268
Loading
/content/journal/ijsem/10.1099/00207713-40-3-268
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error