1887

Abstract

Sequence comparisons of selected regions from small (18S) and large (25S) subunit rRNAs were used to examine species relationships in the anamorphic yeast genera , and . On the basis of sequence similarity, the genus is comprised of and , while the genus contains three recognized species, , and and are well separated from the other species which we examined. Comparisons with selected teleomorphs indicated that the genus is closely related to the genus , whereas the genus exhibited somewhat closer relatedness with the genus . Impacting on our estimates of relatedness was the finding that nucleotide substitution in the rRNA regions which we examined seems relatively constant only among closely related species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-40-1-60
1990-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/40/1/ijsem-40-1-60.html?itemId=/content/journal/ijsem/10.1099/00207713-40-1-60&mimeType=html&fmt=ahah

References

  1. Achenbach-Richter L., Gupta R., Zillig W., Woese C. R. 1988; Rooting the archaebacterial tree: the pivotal role of Thermococcus celer in archaebacterial evolution. Syst. Appl. Microbiol. 10:231–240
    [Google Scholar]
  2. Blanz P. A., Gottschalk M. 1986; Systematic position of Septobasidium, Graphiola and other basidiomycetes as deduced on the basis of their 5S ribosomal RNA nucleotide sequences. Syst. Appl. Microbiol. 8:121–127
    [Google Scholar]
  3. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. 1979; Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:52845299
    [Google Scholar]
  4. Dams E., Hendriks I., Van de Peer Y., Neefs J.-M., Smits G., Vandenbempt I., De Wachter R. 1988; Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 16:r87–rl73
    [Google Scholar]
  5. Fell J. W. 1966; Sterigmatomyces, a new fungal genus from marine areas. Antonie van Leeuwenhoek J. Microbiol. Serol. 32:99–104
    [Google Scholar]
  6. Field K. G., Olsen G. J., Lane D. J., Giovannoni S. J., Ghiselin M. T., Raff E. C., Pace N. R., Raff R. A. 1988; Molecular phylogeny of the animal kingdom. Science 239:748–753
    [Google Scholar]
  7. Georgiev O. L, Nikolaev N., Hadjiolov A. A., Skryabin K. G., Zakharyev V. M., Bayev A. A. 1981; The structure of the yeast ribosomal RNA genes. 4. Complete sequence of the 25S rRNA gene from Saccharomyces cerevisiae. Nucleic Acids Res. 9:6953–6958
    [Google Scholar]
  8. Gutell R. R., Fox G. E. 1988; Compilation of large subunit RNA sequences presented in a structural format. Nucleic Acids Res 16:rl75–r269
    [Google Scholar]
  9. Holmquist R., Miyamoto M. M., Goodman M. 1988; Analysis of higher-primate phylogeny from transversion differences in nuclear and mitochondrial DNA by Lake’s method of evolutionary parsimony and operator metrics. Mol. Biol. Evol. 5:217–236
    [Google Scholar]
  10. Kraepelin G., Schulze U. 1982; Sterigmatosporidium gen. n., a new heterothallic basidiomycetous yeast, the perfect state of a new species of Sterigmatomyces Fell. Antonie van Leeuwenhoek J. Microbiol. Serol. 48:471–483
    [Google Scholar]
  11. Kreger-van Rij N. J. W. 1984 General classification of the yeasts. 1–13 Kreger-van Rij N. J. W.ed The yeasts—a taxonomic study Elsevier Science Publishers; Amsterdam:
    [Google Scholar]
  12. Kurtzman C. P. 1987; Prediction of biological relatedness among yeasts from comparisons of nuclear DNA complementarity. Stud. Mycol. 30:459–468
    [Google Scholar]
  13. Kurtzman C. P. 1989; Estimation of phylogenetic distances among ascomycetous yeasts from partial sequencing of ribosomal RNA. Yeast 5:S351–S354
    [Google Scholar]
  14. Kurtzman C. P. 1990; DNA relatedness among species of Sterigmatomyces and Fellomyces. Int. J. Syst. Bacteriol. 40:56–59
    [Google Scholar]
  15. Lake J. A. 1987; Determining evolutionary distances from highly diverged nucleic acid sequences: operator metrics. J. Mol. Evol. 26:59–73
    [Google Scholar]
  16. Lake J. A. 1987; A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol. Biol. Evol. 4:167–191
    [Google Scholar]
  17. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  18. Mankin A. S., Skryabin K. G., Rubstov P. M. 1986; Identification of ten additional nucleotides in the primary structure of yeast 18S rRNA. Gene 44:143–145
    [Google Scholar]
  19. McCarroB R., Olsen G. J., Stahl Y. D., Woese C. R., Sogin M. L. 1983; Nucleotide sequence of the Dictyostelium discoideum small-subunit ribosomal ribonucleic acid inferred from the gene sequence: evolutionary implications. Biochemistry 22:5858–5868
    [Google Scholar]
  20. Nannèy D. L., Preparata R. M., Preparata F. P., Meyer E. B., Simon E. M. 1989; Shifting ditypic site analysis: heuristics for expanding the phylogenetic range of nucleotide sequences in Sankoff analyses. J. Mol. Evol. 28:451–459
    [Google Scholar]
  21. Rubstov P. M., Musakhanov M. M., Zakharyev V. M., Krayev A. S., Skryabin K. G., Bayev A. A. 1980; The complete structure of yeast ribosomal RNA genes. I. The complete nucleotide sequence of the 18S ribosomal RNA gene from Saccharomyces cerevisiae. Nucleic Acids Res. 8:5779–5794
    [Google Scholar]
  22. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467
    [Google Scholar]
  23. Sogin M. L., Elwood H. J., Gunderson J. H. 1986; Evolutionary diversity of eukaryotic small subunit rRNA genes. Proc. Natl. Acad. Sci. USA 83:1383–1387
    [Google Scholar]
  24. Sugiyama J., Fukagawa M., Chiu S.-W., Komagata K. 1985; Cellular carbohydrate composition, DNA base composition, ubiquinone systems, and diazonium blue B color test in the genera Rhodosporidium, Leucosporidium, Rhodotorula and related basidiomycetous yeasts. J. Gen. Appl. Microbiol. 31:519–550
    [Google Scholar]
  25. Van der Walt J. P., Yamada Y., Ferreira N. P., Richards P. D. G. 1987; New basidiomycetous yeasts from southern Africa. II. Sterigmatomyces wingfieldii sp. n. Antonie van Leeuwenhoek J. Microbiol. Serol. 53:137–142
    [Google Scholar]
  26. Walker W. F., Doolittle W. F. 1982; Redividing the basidiomycetes on the basis of 5S rRNA nucleotide sequences. Nature (London) 299:723–724
    [Google Scholar]
  27. Walker W. F., Doolittle W. F. 1983; 5S rRNA sequences from eight basidiomycetes and fungi imperfecti. Nucleic Acids Res. 11:7625–7630
    [Google Scholar]
  28. Weijman A. C. M., Golubev W. I. 1987; Carbohydrate patterns and taxonomy of yeasts and yeast-like fungi. Stud. Mycol. 30:361–371
    [Google Scholar]
  29. Wejjman A. C. M., Rodrigues de Miranda L., van der Walt J. P. 1988; Redefinition of Candida Berkhout and the consequent emendation of Cryptococcus Kutzing and Rhodotorula Harrison. Antonie van Leeuwenhoek J. Microbiol. Serol. 54:545–553
    [Google Scholar]
  30. Wickerham L. J. 1951; Taxonomy of yeasts. U.S. Dep. Agric. Tech. Bull. 1029:1–56
    [Google Scholar]
  31. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  32. Yamada Y., Banno I. 1984; Fellomyces, a new anamorphic yeast genus for the Q10-equipped organisms whose conidium is freed by an end-break in the sterigma. J. Gen. Appl. Microbiol. 30:523–525
    [Google Scholar]
  33. Yamada Y., Itoh M., Kawasaki H., Banno I., Nakase T. 1988; Kurtzmanomyces gen. nov., an anamorphic yeast genus for the Q10-equipped organism whose conidium is freed by an end-break in the sterigma which branches or elongates to produce additional conidia and whose cells contain no xylose. J. Gen. Appl. Microbiol. 34:503–506
    [Google Scholar]
  34. Yamada Y., Kawasaki H., Itoh M., Banno I., Nakase T. 1988; Tsuchiyaea gen. nov., an anamorphic yeast genus for the Q9-equipped organism whose reproduction is either by entero-blastic budding or by the formation of conidia which are disjointed at a septum in the mid-region of the sterigmata and whose cells contain xylose. J. Gen. Appl. Microbiol. 34:507510
    [Google Scholar]
  35. Yamada Y., Kondo K. 1971 Taxonomic significance of coenzyme Q system in yeasts and yeast-like fungi. 363–373 Proceedings of the First International Special Symposium on Yeasts Slovak Academy of Science; Bratislava:
    [Google Scholar]
  36. Yamada Y., Kondo K. 1973; Coenzyme Q system in the classification of the yeast genera Rhodotorula and Cryptococcus, and the yeast-like genera Sporobolomyces and Rhodosporidium. J. Gen. Appl. Microbiol. 19:59–77
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-40-1-60
Loading
/content/journal/ijsem/10.1099/00207713-40-1-60
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error