1887

Abstract

Abstract

Some of the wall-less bacteria of the class (mycoplasmas) have pyrophosphate (PP)-dependent enzymic activities, including PP-dependent phosphofructokinase (PP-PFK), PP-dependent nucleoside kinase, and pyruvate, orthophosphate dikinase (PPDK) activities. In most other bacteria, adenosine 5′-triphosphate (ATP), not PP, is the cofactor of analogous enzymic reactions. Because PP-dependent enzymes are more common among mollicutes than other bacteria, we describe here an examination of the six walled bacteria that have been reported to be phylogenetically related to the mollicutes (, , and for PP-PFK, ATP-dependent PFK, phosphoenolpyruvate car boxy transphosphorylase, PPDK, and PP- and ATP-dependent acetate kinases. Two anaerobic mollicutes, and , were also tested. , , , and had PP-PFK activities, whereas C. , the two lactobacilli, and had only ATP-dependent PFK activities. and all of the walled bacteria except had PPDK activities. All of the species except and also had pyruvate kinase activities; the effects of allosteric activators were tested. Phosphoenolpyruvate carboxytransphosphorylase was detected by using two methods in , and S. All of the species tested had ATP-dependent acetate kinase activities, but none had detectable PP-dependent acetate kinase activity. The occurrence of one or more PP-dependent enzymes in the mollicutes and their walled relatives is a phenotypic indicator of the phylogenetic relatedness of these organisms. The distribution of these enzymes among members of this group substantiates the subgroups proposed by other workers who used 16S ribosomal ribonucleic acid analysis.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-39-4-413
1989-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/39/4/ijs-39-4-413.html?itemId=/content/journal/ijsem/10.1099/00207713-39-4-413&mimeType=html&fmt=ahah

References

  1. Abbe K., Takahashi S., Yamada T. 1982; Involvement of oxygen-sensitive pyruvate formate-lyase in mixed-acid fermentation by Streptococcus mutans under strictly anaerobic conditions. J. Bacteriol. 152:175–182
    [Google Scholar]
  2. Beutler H.-O., Supp M. 1983; Coenzymes, metabolites, and other biochemical reagents. 328–393 Bergmeyer H. U., Bergmeyer J., Grassl M. Methods of enzymatic analysis, 3rd ed., vol. 2. Samples, reagents, assessment of results Verlag Chemie; Deerfield Beach, Fla.:
    [Google Scholar]
  3. Bowman C. M., Valdez R. O., Nishimura J. S. 1976; Acetate kinase from Veillonella alcalescens. J. Biol. Chem. 251:3117–3121
    [Google Scholar]
  4. Byng G. S., Kane J. F., Jensen R. A. 1982; Diversity in the routing and regulation of complex biochemical pathways as indicators of microbial relatedness. Crit. Rev. Microbiol. 9:227–252
    [Google Scholar]
  5. Cocks B. G., Brake F. A., Mitchell A., Finch L. R. 1985; Enzymes of intermediary carbohydrate metabolism in Ureaplasma urealyticum and Mycoplasma mycoides subsp. mycoides. J. Gen. Microbiol. 131:2129–2135
    [Google Scholar]
  6. Cruden D. L., Durbin W. E., Markovetz A. J. 1983; Utilization of PPI as an energy source by a Clostridium sp. Appl. Environ. Microbiol. 46:1403–1408
    [Google Scholar]
  7. DeSantis D., Tryon V. V., Pollack J. D. 1989; Metabolism of mollicutes: the Embden-Meyerhof-Parnas pathway and the hexose monophosphate shunt. J. Gen. Microbiol. 135:683–691
    [Google Scholar]
  8. Ernst S. M., Budde R. J. A., Chollet R. 1986; Partial purification and characterization of pyruvate,orthophosphate dikinase from Rhodospirillum rubrum. J. Bacteriol. 165:483–488
    [Google Scholar]
  9. Evans H. J., Wood H. G. 1971; Purification and properties of pyruvate phosphate dikinase from propionic acid bacteria. Biochemistry 10:721–729
    [Google Scholar]
  10. Gadeau A.-P., Mouches C., Bove J. M. 1986; Probable insensitivity of mollicutes to rifampin and characterization of spiroplasmal DNA-dependent RNA polymerase. J. Bacteriol. 166:824–828
    [Google Scholar]
  11. Jensen R. A. 1985; Biochemical pathways in prokaryotes can be traced backward through evolutionary time. Mol. Biol. Evol. 2:92–108
    [Google Scholar]
  12. Joyner A. E. Jr., Baldwin R. L. 1966; Enzymatic studies of pure cultures of rumen microorganisms. J. Bacteriol. 92:1321–1330
    [Google Scholar]
  13. Kotzé J. P. 1968; An enzymatic optical method for the determination of nanomole quantities of acetyl phosphate. J. S. Afr. Chem. Inst. 21:105–112
    [Google Scholar]
  14. Kulaev I. S., Vagabov V. M. 1983; Polyphosphate metabolism in micro-organisms. Adv. Microb. Physiol. 24:83–171
    [Google Scholar]
  15. Liu C.-L., Peck H. D. Jr. 1981; Comparative bioenergetics of sulfate reduction in Desulfovibrio and Desulfotomaculum spp. J. Bacteriol. 145:966–973
    [Google Scholar]
  16. Ludwig W., Weizenegger M., Kilpper R., -Bälz Schleifer K. H. 1988; Phylogenetic relationships of anaerobic streptococci. Int. J. Syst. Bacteriol. 38:15–18
    [Google Scholar]
  17. Manolukas J. T., Barile M. F., Chandler D. K. F., Pollack J. D. 1988; Presence of anaplerotic reactions and transamination, and the absence of the tricarboxylic acid cycle in mollicutes. J. Gen. Microbiol. 134:791–800
    [Google Scholar]
  18. McElwain M. C., Chandler D. K. F., Barile M. F., Young T. F., Tryon V. V., Davis J. W. Jr., Petzel J. P., Chang C.-J., Williams M. V., Pollack J. D. 1988; Purine and pyrimidine metabolism in Mollicutes species. Int. J. Syst. Bacteriol. 38:417–423
    [Google Scholar]
  19. Miyatake K., Enomoto T., Kitaoka S. 1984; Detection and subcellular distribution of pyrophosphate: D-fructose 6-phosphate phosphotransferase (PFP) in Euglena gracilis. Agric. Biol. Chem. 48:2857–2859
    [Google Scholar]
  20. Muhlrad A., Peleg I., Robertson J. A., Robinson I. M., Kahane I. 1981; Acetate kinase activity in mycoplasmas. J. Bacteriol. 147:271–273
    [Google Scholar]
  21. O’Brien W. E., Bowien S., Wood H. G. 1975; Isolation and characterization of a pyrophosphate-dependent phosphofructokinase from Propionibacterium shermanii. J. Biol. Chem. 250:8690–8695
    [Google Scholar]
  22. Pollack J. D., McElwain M. C., DeSantis D., Manolukas J., Tully J. G., Chang C.-J., Whitcomb R. F., Hackett K. J., Williams M. V. 1989; Metabolism of members of the Spiroplasmataceae. Int. J. Syst. Bacteriol. 39:406–412
    [Google Scholar]
  23. Pollack J. D., Williams M. V. 1986; PPi-dependent phosphofructotransferase (phosphofructokinase) activity in the mollicutes (mycoplasma) Acholeplasma laidlawii. J. Bacteriol. 165:53–60
    [Google Scholar]
  24. Reeves R. E. 1987; Metabolic energy supplied by PPi,. 255–259 Torriani-Gorini A., Rothman F. G., Silver S., Wright A., Yagil E. Phosphate metabolism and cellular regulation in microorganisms American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  25. Reeves R. E., Guthrie J. D. 1975; Acetate kinase (pyrophosphate). A fourth pyrophosphate-dependent kinase from Entamoeba histolytica. Biochem. Biophys. Res. Commun. 66:1389–1395
    [Google Scholar]
  26. Roberton A. M., Glucina P. G. 1982; Fructose 6-phosphate phosphorylation in Bacteroides species. J. Bacteriol. 150:1056–1060
    [Google Scholar]
  27. Robertson D. C., McCullough W. G. 1968; Glucose catabolism of Erysipelothrix rhusiopathiae. J. Bacteriol. 95:2112–2116
    [Google Scholar]
  28. Robinson I. M., Allison M. J. 1975; Transfer of Acholeplasma bactoclasticum Robinson and Hungate to the genus Anaeroplasma (Anaeroplasma bactoclasticum [Robinson and Hungate] comb.nov.): emended description of the species. Int. J. Syst. Bacteriol. 25:182–186
    [Google Scholar]
  29. Robinson I. M., Allison M. J., Hartman P. A. 1975; Anaeroplasma abactoclasticum gen.nov., sp.nov.: an obligately anaerobic mycoplasma from the rumen. Int. J. Syst. Bacteriol. 25:173–181
    [Google Scholar]
  30. Robinson I. M., Freundt E. A. 1987; Proposal for an amended classification of anaerobic mollicutes. Int. J. Syst. Bacteriol. 37:78–81
    [Google Scholar]
  31. Rogers M. J., Simmons J., Walker R. T., Weisburg W. G., Woese C. R., Tanner R. S., Robinson I. M., Stahl D. A., Olsen G., Leach R. H., Maniloff J. 1985; Construction of the mycoplasma evolutionary tree from 5S rRNA sequence data. Proc. Natl. Acad. Sci. USA 82:1160–1164
    [Google Scholar]
  32. Sanwal B. D. 1970; Allosteric controls of amphibolic pathways in bacteria. Bacteriol. Rev. 34:20–39
    [Google Scholar]
  33. Sawyer M. H., Baumann P., Baumann L. 1977; Pathways of D-fructose and D-glucose catabolism in marine species of Alcaligenes, Pseudomonas marina, and Alteromonas communis. Arch. Microbiol. 112:169–172
    [Google Scholar]
  34. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. 1986; Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl. Environ. Microbiol. 51:873–884
    [Google Scholar]
  35. Skarstedt M. T., Silverstein E. 1976; Escherichia coli acetate kinase mechanism studied by net initial rate, equilibrium, and independent isotopic exchange kinetics. J. Biol. Chem. 251:6775–6783
    [Google Scholar]
  36. Smart J. B., Pritchard G. G. 1979; Regulation of pyruvate kinase from Propionibacterium shermanii. Arch. Microbiol. 122:281–288
    [Google Scholar]
  37. Trautschold I., Lamprecht W., Schweitzer G. 1985; Adenosine 5′-triphosphate, UV-method with hexokinase and glucose-6-phosphate dehydrogenase. 346–357 Bergmeyer H. U., Bergmeyer J., Grassl M. Methods of enzymatic analysis, 3rd ed., vol. 7. Metabolites 2 VCH Publishers; Deerfield Beach, Fla.:
    [Google Scholar]
  38. Tryon V. V., Pollack D. 1984; Purine metabolism in Acholeplasma laidlawii B: novel PPi-dependent nucleoside kinase activity. J. Bacteriol. 159:265–270
    [Google Scholar]
  39. Weitzman P. D. J. 1980; Citrate synthase and succinate thiokinase in classification and identification. Appl. Bacteriol. Symp. Ser. 8:107–125
    [Google Scholar]
  40. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  41. Woese C. R., Maniloff J., Zablen L. B. 1980; Phylogenetic analysis of the mycoplasmas. Proc. Natl. Acad. Sci. USA 77:494–498
    [Google Scholar]
  42. Woese C. R., Stackebrandt E., Ludwig W. 1985; What are mycoplasmas: the relationship of tempo and mode in bacterial evolution. J. Mol. Evol. 21:305–316
    [Google Scholar]
  43. Wood H. G. 1985; Inorganic pyrophosphate and polyphosphates as sources of energy. Curr. Top. Cell. Regul. 26:355–369
    [Google Scholar]
  44. Wood H. G., Davis J. J., Willard J. M. 1969; Phosphoenolpyruvate carboxytransphosphorylase from Propionibacterium shermanii. Methods Enzymol. 13:297–309
    [Google Scholar]
  45. Wood H. G., Goss N. H. 1985; Phosphorylation enzymes of the propionic acid bacteria and the roles of ATP, inorganic pyrophosphate, and polyphosphates. Proc. Natl. Acad. Sci. USA 82:312–315
    [Google Scholar]
  46. Yamada T., Carlsson J. 1975; Glucose-6-phosphate-dependent pyruvate kinase in Streptococcus mutans. J. Bacteriol. 124:562–563
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-39-4-413
Loading
/content/journal/ijsem/10.1099/00207713-39-4-413
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error