1887

Abstract

Abstract

Cell-free extracts from 10 strains of species were examined for 67 enzyme activities of the Embden-Meyerhof-Parnas pathway, pentose phosphate shunt, tricarboxylic acid cycle, and purine and pyrimidine pathways. The spiroplasmas were fermentative, possessing enzyme activities that converted glucose 6-phosphate to pyruvate and lactate by the Embden-Meyerhof-Parnas pathway. Substrate phosphorylation was found in all strains. A modified pentose phosphate shunt was present, which was characterized by a lack of detectable glucose 6-phosphate and 6-phosphogluconate dehydrogenase activities. Spiroplasmas could synthesize purine mononucleotides by using pyrophosphate (PP) as the orthophosphate donor. All spiroplasmas except used adenosine triphosphate (ATP) to phosphorylate deoxyguanosine; no other nucleoside could be phosphorylated with ATP by any spiroplasma tested. These results contrast with those reported for other mollicutes, in which PP serves as the orthophosphate donor in the nucleoside kinase reaction. The participation of ATP rather than PP in this reaction is unknown in other mollicutes regardless of the nucleoside reactant. Deoxypyrimidine enzyme activities were similar but varied in the reactions involving deamination of deoxycytidine triphosphate and deoxycytidine. All spp. strains had deoxyuridine triphosphatase activity. Uridine phosphorylase activity varied among strains and is possibly group dependent. As in all other mollicutes, a tricarboxylic acid cycle is apparently absent in spp. Reduced nicotinamide adenine dinucleotide oxidase activity was localized in the cytoplasmic fraction of all species tested. Our assays indicate that the members of the are essentially metabolically homogeneous in the highly conserved pathways which we studied, but differ from other mollicutes in several important respects. These differences are of probable phylogenetic significance and may provide tools for recognition of higher taxonomic levels of mollicutes.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-39-4-406
1989-10-01
2022-12-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/39/4/ijs-39-4-406.html?itemId=/content/journal/ijsem/10.1099/00207713-39-4-406&mimeType=html&fmt=ahah

References

  1. Bové J. M., Saillard C. 1979; Cell biology of spiroplasmas. 83–153 Whitcomb R. F., Tully J. G. The mycoplasmas, vol. 3. Plant and insect mycoplasmas Academic Press, Inc.; New York:
    [Google Scholar]
  2. Chang C.-J. 1984; Vitamin requirements of three spiroplasmas. J. Bacteriol. 160:488–490
    [Google Scholar]
  3. Chang C.-J. 1985; Lipid utilization of two flower spiroplasmas and honeybee spiroplasma. Can. J. Microbiol. 31:173–176
    [Google Scholar]
  4. Chang C.-J., Chen T. A. 1982; Spiroplasmas: cultivation in chemically defined medium. Science 215:1121–1122
    [Google Scholar]
  5. Chang C.-J., Chen T. A. 1982; Nutritional requirements of two flower spiroplasmas and honeybee spiroplasma. J. Bacteriol. 153:452–457
    [Google Scholar]
  6. Charron A., Bebear C., Brun G., Yot P., Latrille J., Bove J. M. 1979; Separation and partial characterization of two deoxyribonucleic acid polymerases from Spiroplasma citri. J. Bacteriol. 140:763–768
    [Google Scholar]
  7. Charron A., Castroviejo M., Bebear C., Latrille J., Bove J. M. 1982; A third polymerase from Spiroplasma citri and two other spiroplasmas. J. Bacteriol. 149:1138–1141
    [Google Scholar]
  8. Chen T. A., Liao C. H. 1975; Com stunt spiroplasma: isolation, cultivation, and proof of pathogenicity. Science 188:1015–1017
    [Google Scholar]
  9. Chen T. A., Wells J. M., Liao C. H. 1982; Cultivation in vitro: spiroplasmas, plant mycoplasmas, and other fastidious walled prokaryotes. 417–446 Mount M. S., Lacy G. H. Phytopathogenic prokaryotes 2 Academic Press, Inc.; New York:
    [Google Scholar]
  10. Clark T. B. 1982; Spiroplasmas: diversity of arthropod reservoirs and host-parasite relationships. Science 217:57–59
    [Google Scholar]
  11. Cocks B. G., Youil R., Finch L. R. 1988; Comparison of enzymes of nucleotide metabolism in two members of the Mycoplasmataceae family. Int. J. Syst. Bacteriol. 38:273–278
    [Google Scholar]
  12. Constantopoulos G., McGarrity G. J. 1987; Activities of oxidative enzymes in mycoplasmas. J. Bacteriol. 169:2012–2016
    [Google Scholar]
  13. Davis P. J., Katznel A., Razin S., Rotten S. 1985; Spiroplasma membrane lipids. J. Bacteriol. 161:118–122
    [Google Scholar]
  14. DeSantis D., Tryon V. V., Pollack J. D. 1989; Metabolism of Mollicutes: the Embden-Meyerhof-Parnas pathway and the hexose monophosphate shunt. J. Gen. Microbiol. 135:683–691
    [Google Scholar]
  15. Freeman B. A., Sissenstein R., McManus T. T., Woodward J. E., Lee I. M., Mudd J. B. 1976; Lipid composition and lipid metabolism of Spiroplasma citri. J. Bacteriol. 125:946–954
    [Google Scholar]
  16. Gottschalk G. 1986 Bacterial metabolism, 2nd ed..208–282 Springer-Verlag; New York:
    [Google Scholar]
  17. Hackett K. J., Clark T. B. 1989; Ecology of spiroplasmas. 113–200 Whitcomb R. F., Tully J. G. The mycoplasmas, vol. 5. Spiroplasmas Academic Press, Inc.; New York:
    [Google Scholar]
  18. Hackett K. J., Ginsberg A. S., Rottem S., Henegar R. B., Whitcomb R. F. 1987; A defined medium for a fastidious spiroplasma. Science 237:525–527
    [Google Scholar]
  19. Hoffmann P. J., Cheng Y.-C. 1978; The deoxyribonuclease induced after infection of KB cells by herpes simplex virus. I. Purification and characterization of the enzyme. J. Biol. Chem. 253:3557–3562
    [Google Scholar]
  20. Igwegbe E. C. K., Stevens C., Hollis J. J. Jr. 1979; An in vitro comparison of some biochemical and biological properties of California, USA, and Morocco isolates of Spiroplasma citri. Can. J. Microbiol. 25:1125–1132
    [Google Scholar]
  21. Igwegbe E. C. K., Thomas C. 1979; Occurrence of enzymes of arginine dihydrolase pathway in Spiroplasma citri. J. Gen. Appl. Microbiol. 24:261–269
    [Google Scholar]
  22. Jones A. L., Whitcomb R. F., Williamson D. L., Coan M. E. 1977; Comparative growth and primary isolation of spiroplasmas in media based on insect tissue culture formulations. Phytopathology 67:738–746
    [Google Scholar]
  23. Kahane I., Greenstein S., Razin S. 1977; Carbohydrate content and enzymatic activities in the membrane of Spiroplasma citri. J. Gen. Microbiol. 101:173–176
    [Google Scholar]
  24. Lee I.-M., Davis R. E. 1984; New media for rapid growth of Spiroplasma citri and corn stunt spiroplasma. Phytopathology 74:84–89
    [Google Scholar]
  25. Liao C. H., Chen T. A. 1977; Culture of corn stunt spiroplasma in a simple medium. Phytopathology 67:802–807
    [Google Scholar]
  26. Manolukas J. T., Barile M. F., Chandler D. K. F., Pollack J. D. 1988; Presence of anaplerotic reactions and transamination, and the absence of the tricarboxylic acid cycle in Mollicutes. J. Gen. Microbiol. 134:791–800
    [Google Scholar]
  27. Masover G. K., Razin S., Hayflick L. 1977; Localization of enzymes in Ureaplasma urealyticum (T-strain Mycoplasma). J. Bacteriol. 130:297–302
    [Google Scholar]
  28. McElwain, M. C. Chandler D. K. F., Barile M. F., Young T. F., Tryon V. V., Davis J. W. Jr., Petzel J. P., Chang C.-J., Williams M. V., Pollack J. D. 1988; Purine and pyrimidine metabolism in Mollicutes species. Int. J. Syst. Bacteriol. 38:417–423
    [Google Scholar]
  29. McGarrity G. J., Gamon L., Steiner T., Tully J., Kotani H. 1985; Uridine phosphorylase activity among the class mollicutes. Curr. Microbiol. 12:107–112
    [Google Scholar]
  30. McIvor R. S., Kenny G. E. 1978; Differences in incorporation of nucleic acid bases and nucleosides by various Mycoplasma and Acholeplasma species. J. Bacteriol. 135:483–489
    [Google Scholar]
  31. Mudd J. B., Ittig M., Roy B., Latrille J., Bové J. M. 1977; Composition and enzyme activities of Spiroplasma citri membranes. J. Bacteriol. 129:1250–1256
    [Google Scholar]
  32. Mudd J. B., Lee I.-M., Liu H.-Y., Calavan E. C. 1979; Comparison of the membrane composition of Spiroplasma citri and the com stunt Spiroplasma. J. Bacteriol. 137:1056–1058
    [Google Scholar]
  33. Neale G. A. M., Mitchell A., Finch L. R. 1983; Enzymes of pyrimidine deoxyribonucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides. J. Bacteriol. 156:1001–1005
    [Google Scholar]
  34. Pollack J. D. 1979; Respiratory pathways and energy yielding mechanisms. 188–211 Barile M. F., Razin S. The mycoplasmas, vol. 1. Cell biology Academic Press, Inc.; New York:
    [Google Scholar]
  35. Pollack J. D. 1983; Localization of enzymes in mycoplasmas: preparatory steps. Methods Mycoplasmol. 1:327–332
    [Google Scholar]
  36. Pollack J. D. 1986; Metabolic distinctiveness of ureaplasmas. Pediatr. Infect. Dis. 5:S305–S307
    [Google Scholar]
  37. Pollack J. D., Hoffmann P. J. 1982; Properties of the nucleases of Mollicutes. J. Bacteriol. 152:538–541
    [Google Scholar]
  38. Pollack J. D., Razin S., Cleverdon R. C. 1965; Localization of enzymes in Mycoplasma. J. Bacteriol. 90:617–622
    [Google Scholar]
  39. Pollack J. D., Tryon V. V., Beaman K. D. 1983; The metabolic pathways of Acholeplasma and Mycoplasma: an overview. Yale J. Biol. Med. 56:709–716
    [Google Scholar]
  40. Pollack J. D., Williams M. V. 1986; PPI-dependent phosphofructotransferase (phosphofructokinase) activity in the Mollicutes (mycoplasma) Acholeplasma laidlawii. J. Bacteriol. 165:53–60
    [Google Scholar]
  41. Rogers M. J., Simmons J., Walker R. T., Weisburg W. G., Woese C. R., Tanner R. S., Robinson I. M., Stahl D. A., Olsen G., Leach R. H., Maniloff J. 1985; Construction of the mycoplasma evolutionary tree from 5S rRNA sequence data. Proc. Natl. Acad. Sci. USA 82:1160–1164
    [Google Scholar]
  42. Saglio P. H. M., Daniels M. J., Pradet A. 1979; ATP and energy charge as criteria of growth and metabolic activity of Mollicutes: application to Spiroplasma citri. J. Gen. Microbiol. 110:13–20
    [Google Scholar]
  43. Saglio P. H. M., Davis R. E., Dalibart R., Dupont G., Bové J. M. 1974; Spiroplasma citri: L’espece type des spiroplasmes. Colloq. INSERM (Inst. Natl. Sante Rech. Med.) 33:27–34
    [Google Scholar]
  44. Saglio P. H. M., L’hospital M., Lafléche D., Dupont G., Bové J. M., Tully J. G., Freundt E. A. 1973; Spiroplasma citri gen. and sp. n.: a mycoplasma-like organism associated with “stubborn” disease of citrus. Int. J. Syst. Bacteriol. 23:191–204
    [Google Scholar]
  45. Saglio P. H. M., Whitcomb R. F. 1979; Diversity of wall-less prokaryotes in plant vascular tissue, fungi, and invertebrate animals. 1–36 Whitcomb R. F., Tully J. G. The mycoplasmas, vol. 3. Plant and insect mycoplasmas Academic Press, Inc.; New York:
    [Google Scholar]
  46. Steiner T., McGarrity G. J., Phillips D. M. 1982; Cultivation and partial characterization of spiroplasmas in cell cultures. Infect. Immun. 35:296–304
    [Google Scholar]
  47. Stephens M. A. 1982; Partial purification and cleavage specificity of a site-specific endonuclease, SciNI, isolated from Spiroplasma citri. J. Bacteriol. 149:508–514
    [Google Scholar]
  48. Stevens C., Cody R. M., Gudauskas R. T. 1980; Arginine metabolism of the com stunt spiroplasma. Curr. Microbiol. 4:139–142
    [Google Scholar]
  49. Townsend R. 1976; Arginine metabolism by Spiroplasma citri. J. Gen. Microbiol. 94:417–420
    [Google Scholar]
  50. Townsend R., Markham P. G., Plaskitt K. A., Daniels M. G. 1977; Isolation and characterization of a non-helical strain of Spiroplasma citri. J. Gen. Microbiol. 100:15–21
    [Google Scholar]
  51. Tryon V. V., Pollack J. D. 1984; Purine metabolism in Acholeplasma laidlawii B: novel PPi-dependent nucleoside kinase activity. J. Bacteriol. 159:265–270
    [Google Scholar]
  52. Tryon V. V., Pollack J. D. 1985; Distinctions in Mollicutes purine metabolism: pyrophosphate-dependent nucleoside kinase and dependence on guanylate salvage. Int. J. Syst. Bacteriol. 35:497–501
    [Google Scholar]
  53. Tully J. G., Rose D. L., Clark E., Carle P., Bové J. M., Henegar R. B., Whitcomb R. F., Colflesh D. E., Williamson D. L. 1987; Revised group classification of the genus Spiroplasma (class Mollicutes), with proposed new groups XII to XXII. Int. J. Syst. Bacteriol. 37:357–364
    [Google Scholar]
  54. Tully J. G., Whitcomb R. F., Clark H. F., Williamson D. L. 1977; Pathogenic mycoplasmas: cultivation and vertebrate pathogenicity of a new spiroplasma. Science 195:892–894
    [Google Scholar]
  55. Whitcomb R. F. 1980; The genus Spiroplasma. Annu. Rev. Microbiol. 34:677–709
    [Google Scholar]
  56. Williams M. V., Pollack J. D. 1985; Pyrimidine deoxyribonucleotide metabolism in Acholeplasma laidlawii B-PG9. J. Bacteriol. 161:1029–1033
    [Google Scholar]
  57. Williams M. V., Pollack J. D. 1988; Uracil-DNA glycosylase activity. Relationship to proposed biased mutation pressure in the class Mollicutes. 440–444 Moses R. E., Summers W. C. DNA replication and mutagenesis American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  58. Williamson D. L., Whitcomb R. F. 1975; Plant mycoplasmas: a cultivable spiroplasma causes corn stunt disease. Science 188:1018–1020
    [Google Scholar]
  59. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-39-4-406
Loading
/content/journal/ijsem/10.1099/00207713-39-4-406
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error