1887

Abstract

Abstract

In , vol. 1, only one species is listed in the genus One other species, , was proposed by Yamada and Akita in 1984. However, recent deoxyribonucleic acid-deoxyribonucleic acid homology studies have produced evidence of at least three distinct homology groups that are believed to represent three species within this genus. In this paper we report results obtained by using 35 strains and 58 phenotypic characteristics. Three tests were useful in differentiating the three species. Homology group I strains grew to an optical density (OD) of only 0.5 U or less on medium containing ribitol or arabitol as the primary carbon source, and they grew to an OD of only 0.5 U or less after three passages (24 h of incubation each) in nicotinate-deficient media. We propose that the name (Henneberg 1897) De Ley 1961 be retained for these strains. Homology group II strains grew to an OD of more than 1.0 U on medium containing ribitol or arabitol as the primary carbon source, and they grew to an OD of more than 1.0 U after three passages (24 h of incubation each) in nicotinate-deficient media. We propose that the group II gluconobacters be named sp. nov. All of the typical strains of homology group ΙΠ grew to an OD of 0.5 U or less on medium containing ribitol or arabitol as the primary carbon source, but they grew to an OD of 1.0 U or more after three passages (24 h of incubation each) in nicotinate-deficient media. We propose that the group III gluconobacters be named sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-39-2-174
1989-04-01
2023-02-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/39/2/ijs-39-2-174.html?itemId=/content/journal/ijsem/10.1099/00207713-39-2-174&mimeType=html&fmt=ahah

References

  1. Ameyama M. 1975; Gluconobacter oxydans subsp. sphaericus, new subspecies isolated from grapes. Int. J. Syst. Bacteriol. 25:365–370
    [Google Scholar]
  2. Asai T. 1968; Acetic acid bacteria: classification and biochemical activities. University Park Press; Baltimore:
    [Google Scholar]
  3. Asai T., Shoda K. 1958; The taxonomy of Acetobacter and allied oxidative bacteria. J. Gen. Appl. Microbiol. 4:289–311
    [Google Scholar]
  4. DeLey J. 1961; Comparative carbohydrate metabolism and a proposal for the phylogenetic relationship of the acetic acid bacteria. J. Gen. Microbiol. 24:31–50
    [Google Scholar]
  5. DeLey J., Frateur J. 1974; Family I. Pseudomonadaceae. Genus IV. Gluconobacter Asai 1935, 689, emend, mut. char. Asai, Iizuka and Komagata, 1964, 100. 251–253 Buchanan R. E., Gibbons N. E. Bergey’s manual of determinative bacteriology, 8th ed.. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  6. DeLey J., Gillis M., Swings J. 1984; Family VI. Acetobacteraceae Gillis and De Ley 1980, 23. 268 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  7. DeLey J., Swings J. 1984; Genus Gluconobacter Asai 1935, 689, emend, mut. char. Asai, Iiquka and Komagata 1964,100. 275–278 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1: The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  8. Frateur J. 1950; Essai sur la Systématique des Acetobacters. Cellule 53:287–392
    [Google Scholar]
  9. Gherna R. 1978; Media formulations. 432 Gherna R., Nierman W., Pienta P. The American Type Culture Collection Catalogue of Strains I, 13th ed..American Type Culture Collection Rockville; Md.:
    [Google Scholar]
  10. Gosselé F., Swings J., DeLey J. 1980; Growth factor requirements of Gluconobacter. Zentralbl. Bakteriol. Microbiol. Hyg. Abt. 1 Orig. Reihe C 1:348–350
    [Google Scholar]
  11. Gosselé F., Swings J., Kersters K., DeLey J. 1983; Numerical analysis of phenotypic features and protein gel electro-pherograms of Gluconobacter Asai 1935 emend, mut. char. Asai, Iizuka, and Komagata 1964. Int. J. Syst. Bacteriol. 33:65–81
    [Google Scholar]
  12. Greenfield S., Claus G. W. 1972; Nonfunctional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans. J. Bacteriol. 112:1295–1301
    [Google Scholar]
  13. Loitsyanskaya M. S., Pavlenko G. V., Ivchenko A. I. 1979; Taxonomy of acetic acid bacteria. Mikrobiologiya (Engl. Transi.) 48:545–551
    [Google Scholar]
  14. Micales B. K., Johnson J. L., Claus G. W. 1985; Deoxyribonucleic acid homologies among organisms in the genus Gluconobacter. Int. J. Syst. Bacteriol. 35:79–85
    [Google Scholar]
  15. Rao M. R. R., Stokes J. L. 1953; Nutrition of the acetic acid bacteria. J. Bacteriol. 65:405–412
    [Google Scholar]
  16. Saito H., Miura K. I. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 72:619–629
    [Google Scholar]
  17. Smibert R. M., Krieg N. R. 1981; General characterization. 409–449 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  18. White S. A., Claus G. W. 1982; Effect of intracytoplasmic membrane development on oxidation of sorbitol and other polyols by Gluconobacter oxydans. J. Bacteriol. 150:934–943
    [Google Scholar]
  19. Yamada Y., Aida K., Uemura T. 1968; Distribution of ubiquinone 10 and 9 in acetic acid bacteria and its relation to the classification of genera Gluconobacter and Acetobacter, especially of so-called intermediate strains. Agric. Biol. Chem. 32:786–788
    [Google Scholar]
  20. Yamada Y., Aida K., Uemura T. 1969; Enzymatic studies on the oxidation of sugar and sugar alcohol. V. Ubiquinone of acetic acid bacteria and its relation to classification of genera Gluconobacter and Acetobacter, especially of the so-called “intermediate” strains. J. Gen. Appl. Microbiol. 15:181–196
    [Google Scholar]
  21. Yamada Y., Akita M. 1984; An electrophoretic comparison of enzymes in strains of Gluconobacter species. J. Gen. Appl. Microbiol. 30:115–126
    [Google Scholar]
  22. Yamada Y., Itakura N., Yamashita M., Tahara Y. 1984; Deoxyribonucleic acid homologies in strains of Gluconobacter species. J. Ferment. Technol. 62:595–600
    [Google Scholar]
  23. Yamada Y., Nunoda M., Ishikawa T., Tahara Y. 1981; The cellular fatty acid composition in acetic acid bacteria. J. Gen. Appl. Microbiol. 27:405–418
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-39-2-174
Loading
/content/journal/ijsem/10.1099/00207713-39-2-174
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error