A Halophilic Denitrifier, sp. nov. Free

Abstract

Abstract

A new halotolerant denitrifier, which was isolated from a solar saltern by enrichment culture in liquid medium supplemented with 1.06 M (9%) NaNO, grew optimally in media containing 0.5 to 1.35 M NaCI, survived and multiplied in media ranging in salinity from 0.35 to 4.25 M NaCI, and tolerated high nitrite ion concentrations, as well as high nitrate ion concentrations. The salt requirement could be provided by 1 M KNO3 or KC1 instead of NaCI. For this nonfermentative organism, nitrate and nitrite were the only electron acceptors tested that supported anaerobic growth on a complex medium. Washed cells reduced both nitrate and nitrite at significant rates. The isolate lacked a nitrous oxide reductase activity, utilized a variety of substrates as carbon and energy sources, and required both growth factors and organic (reduced) sulfur. Ammonia served as a nitrogen source for growth, but nitrate did not. Despite the failure of the organism to sporulate, assignment to the genus appeared to be consistent with results of cell constituent analyses and partial 16S ribosomal ribonucleic acid sequencing. We propose the name for this organism. A type culture has been deposited with the American Type Culture Collection, Rockville, Md., as strain ATCC 49067.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-39-2-145
1989-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/39/2/ijs-39-2-145.html?itemId=/content/journal/ijsem/10.1099/00207713-39-2-145&mimeType=html&fmt=ahah

References

  1. Balderston W. L., Sherr B., Payne W. J. 1976; Blockage by acetylene or nitrous oxide reduction in Pseudomonas perfectomarinus. Appl. Environ. Microbiol. 31:504–508
    [Google Scholar]
  2. Beuscher N., Mayer F., Gottschalk G. 1974; Citrate lyase from Rhodopseudomonas gelatinosa: purification, electron microscopy and subunit structure. Arch. Microbiol. 100:307–328
    [Google Scholar]
  3. Blackmer A. M., Bremner J. M. 1978; Inhibitory effect of nitrate on reduction of N2o to N2 by soil microorganisms. Soil Biol. Biochem. 10:187–191
    [Google Scholar]
  4. Carbon P., Ehresmann C., Ehresmann B., Ebel J.-P. 1979; The complete nucleotide sequence of the ribosomal 16S rRNA from Escherichia coli. Eur. J. Biochem. 100:399–410
    [Google Scholar]
  5. Carlson C. A., Ingraham J. L. 1983; Comparison of denitrfication by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus de nitrifie ans. Appl. Environ. Microbiol. 45:1247–1253
    [Google Scholar]
  6. Claus D., Berkeley R. C. W. 1986; Genus Bacillus,. 1105–1139 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Bergey’s manual of systematic bacteriology 2 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  7. Couchot K. R., Maier S. 1974; Anaerobic sporulation in facultatively anaerobic species of the genus Bacillus. Can. J. Microbiol. 20:1291–1296
    [Google Scholar]
  8. Cowan S. T., Steel K. J. 1965; Manual for the identification of medical bacteria. Cambridge University Press; Cambridge:
    [Google Scholar]
  9. Eddy B. P., Ingram M. 1956; A salt tolerant denitrifying Bacillus strain which “blows” canned bacon. J. Appl. Bacteriol. 19:62–70
    [Google Scholar]
  10. Francis C. W., Hancher C. W. 1981; Biological denitrification of high nitrate wastes generated in the nuclear industry. 234–250 Cooper P. F., Atkinson B. Biological fluidized bed treatment of water and waste water Ellis Horwood Ltd.; Chichester, England:
    [Google Scholar]
  11. Green C. J., Stewart G. C., Hillis M. A., Void B. S., Bott K. F. 1985; Nucleotide sequence of the Bacillus subtilis ribosomal RNA operon, rrn B. Gene 37:261–266
    [Google Scholar]
  12. Gupta R., Lanter J. M., Woese C. R. 1983; Sequence of the 16S ribosomal RNA from Halobacterium volcanic, an archaebacterium. Science 221:656–659
    [Google Scholar]
  13. Heath L. S., Sloan G. L., Heath H. E. 1986; A simple and generally applicable procedure for releasing DNA from bacterial cells. Appl. Environ. Microbiol. 51:1138–1140
    [Google Scholar]
  14. Hendrie M. S., Holding A. J., Shewan J. M. 1974; Emended descriptions of the genus Alcaligenes and of Alcaligenes faecalis and proposal that the generic name Achromobacter be rejected: status of the named species of Alcaligenes and Achromobacter. Int. J. Syst. Bacteriol. 24:534–550
    [Google Scholar]
  15. Imsande J. 1978; Genetic regulation of penicillinase synthesis in gram-positive bacteria. Microbiol. Rev. 42:67–83
    [Google Scholar]
  16. Iwasaki H., Matsubara T. 1972; A nitrite reductase from Achromobacter cycloclastes. J. Biochem. (Tokyo) 71:645–652
    [Google Scholar]
  17. Kakutani T., Watanabe H., Arima K., Beppu T. 1981; Purification and properties of a copper-containing nitrite reductase from a denitrifying bacterium, Alcaligenes faecalis strain S-6. J. Biochem. (Tokyo) 89:453–461
    [Google Scholar]
  18. Klapwijk A. 1985; Application of denitrification in waste water treatment. 241–255 Golterman H. L. Denitrification in the nitrogen cycle Plenum Publishing Corp.; New York:
    [Google Scholar]
  19. Knowles R. 1982; Denitrification. Microbiol. Rev. 46:43–70
    [Google Scholar]
  20. Kop J., Kopylov A. M., Magrum L., Siegel R., Guptar R., Woese C. R., Noller H. F. 1984; Probing the structure of 16S ribosomal RNA from Bacillus brevis. J. Biol. Chem. 259:15287–15293
    [Google Scholar]
  21. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  22. Larsen H. 1986; Halophilic and halotolerant microorganisms. An overview and historical perspective. FEMS Microbiol. Rev. 39:3–7
    [Google Scholar]
  23. Laskin A. I., Lechevalier H. A. 1981; Microbial composition: carbohydrate, lipids and minerals. CRC handbook of microbiology, 2nd ed.. 4 CRC Press, Inc.; Boca Raton, Fla:
    [Google Scholar]
  24. Mandelstam J., Errington J. 1987; Dependent sequences of gene expression controlling spore formation in Bacillus subtilis. Microbiol. Sci. 4:238–244
    [Google Scholar]
  25. Masuko M., Iwasaki H., Sakurai T., Suzuki S., Nakahara A. 1984; Characterization of a nitrite reductase from a denitrifier, Alcaligenes sp. NCIB 11015. A novel copper protein.. J. Biochem. (Tokyo) 96:447–454
    [Google Scholar]
  26. Matheson A. T., Sprott G. D., McDonald I. J., Tessier H. 1976; Some properties of an unidentified halophile: growth characteristics, internal salt concentration and morphology. Can. J. Microbiol. 22:780–786
    [Google Scholar]
  27. Matsubara T., Iwasaki H. 1971; Enzymatic steps of dissimilatory nitrite reduction in Alcaligenes faecalis. J. Biochem. (Tokyo) 69:859–868
    [Google Scholar]
  28. Mayfield C. I., Inniss W. E. 1977; A rapid simple method for staining bacterial flagella. Can. J. Microbiol. 23:1311–1313
    [Google Scholar]
  29. Payne W. J. 1981 Denitrification John Wiley & Sons, Inc.; New York:
    [Google Scholar]
  30. Pfiffner S. M., Mclnerney M. J., Jenneman G. E., Knapp R. M. 1986; Isolation of halotolerant, thermo tolerant, facultative polymer-producing bacteria and characterization of the exopolymer. Appl. Environ. Microbiol. 51:1224–1229
    [Google Scholar]
  31. Pichinoty F., Garcia J. L., Job C., Durand M. 1978; La denitrification chez Bacillus licheniformis. Can. J. Microbiol. 24:45–49
    [Google Scholar]
  32. Pichinoty F., Mandel M., Garcia J. L. 1979; The properties of novel mesophilic denitrifying Bacillus cultures found in tropical soils. J. Gen. Microbiol. 115:419–430
    [Google Scholar]
  33. Renner E. D., Becker G. E. 1970; Production of nitric oxide and nitrous oxide during denitrification by Corynebacterium nephridii. J. Bacteriol. 101:821–826
    [Google Scholar]
  34. Robinson J., Gibbons N. E. 1952; The effect of salt on the growth of Micrococcus halodenitrificans n. sp. Can. J. Bot. 30:147–154
    [Google Scholar]
  35. Sawada E., Satoh T., Kitamura H. 1978; Purification and properties of a dissimilatory nitrite reductase of a denitrifying phototrophic bacterium. Plant Cell Physiol. 19:1339–1351
    [Google Scholar]
  36. Smith N. R., Gordon R. E., Clark F. E. 1952; Aerobic sporeforming bacteria. Agricultural Monograph no. 16 United States Department of Agriculture; Washington, D.C.:
    [Google Scholar]
  37. Tomlinson G. A., Jahnke L. L., Hochstem L. I. 1986; Halobacterium denitrificans sp. nov., an extremely halophilic denitrifying bacterium. Int. J. Syst. Bacteriol. 36:66–70
    [Google Scholar]
  38. Ventosa A. 1988; Taxonomy of moderately halophilic heterotrophic eubacteria. 71–84 Rodriguez-Valero F. Halophilic bacteria CRC Press, Inc.; Boca Raton, Fla:
    [Google Scholar]
  39. Vreeland R. H., Martin E. L. 1980; Growth characteristics, effect of temperature, and ion specificity of the halotolerant bacterium Halomonas elongata. Can. J. Microbiol. 26:746–752
    [Google Scholar]
  40. Weisser J., Truper H. 1985; Osmoregulation in a new haloalkalophilic Bacillus from the Wadi Natrun. Syst. Appl. Microbiol. 6:7–11
    [Google Scholar]
  41. Whitman W. B., Shieh J. S., Sohn S.-H., Caras D. S., Premachadran U. 1986; Isolation and characterization of 22 mesophilic methanococci. Syst. Appl. Microbiol. 7:235–240
    [Google Scholar]
  42. Wiegel J., Quandt L. 1982; Determination of the Gram type using the reaction between polymycin B and lipopolysaccharides of the outer cell wall of whole bacteria. J. Gen. Microbiol. 128:2261–2270
    [Google Scholar]
  43. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  44. Zumft W. G., Gotzmann D. J., Kroneck P. M. H. 1987; Type 1, blue copper proteins constitute a respiratory nitrite-reducing system in Pseudomonas aureofaciens. Eur. J. Biochem. 168:301–307
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-39-2-145
Loading
/content/journal/ijsem/10.1099/00207713-39-2-145
Loading

Data & Media loading...

Most cited Most Cited RSS feed