1887

Abstract

Abstract

A new anaerobic mesophilic cellulolytic Clostridium isolated from a methanogenic cellulose-enriched culture is described. Optimal growth occurs at 35°C and pH 7.0. Fructose, maltose, rhamnose, lactose, glucose, xylose, ribose, mannose, raffinose, cellobiose, arabinose, galactose, mannitol, adonitol, esculin, salicin, and trehalose serve as substrates for growth. The major fermentation products from cellulose or cellobiose are ethanol, acetate, formate, butyrate, isobutyrate, isovalerate, caproate, lactate, succinate, CO, and H. The deoxyribonucleic acid base composition is 38 mol% guanine plus cytosine. The type strain is 18A (= CECT 954).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-39-1-68
1989-01-01
2022-09-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/39/1/ijs-39-1-68.html?itemId=/content/journal/ijsem/10.1099/00207713-39-1-68&mimeType=html&fmt=ahah

References

  1. Betaine H. G., Linehan B. A., Bryant M. P., Holdeman L. V. 1977; Isolation of a cellulolytic Bacteroides sp. from human feces. Appl. Environ. Microbiol 33:1009–1010
    [Google Scholar]
  2. Bryant M. P. 1972; Commentary on the Hungate technique for culture of anaerobic bacteria. Ann. J. Clin. Nutr 25:1324–1328
    [Google Scholar]
  3. Cato E. P., Hash E. D., Holdeman L. V., Moore W. E. C. 1982; Electrophoretic study of Clostridium species. J. Clin. Microbiol. 15:688–702
    [Google Scholar]
  4. Hobson P. N., Wallace R. J. 1982; Microbial ecology and activities in the rumen. I. Crit. Rev. Microbiol. 9:162–225
    [Google Scholar]
  5. Hobson P. N., , and R, Wallace J. 1982; Microbial ecology and activities in the rumen. II. Crit. Rev. Microbiol. 9:253–320
    [Google Scholar]
  6. Holdeman L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe laboratory manual, 4th. Virginia Polytechnic Institute and State University; Blacksburg:
    [Google Scholar]
  7. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. 117–132 In Norris J. R., Ribbons D. W. Methods in microbiology 3B: Academic Press, Inc. (London), Ltd.; London:
    [Google Scholar]
  8. Khan A. W., Trottier T. M., Patel G. B., Martin S. M. 1979; Nutrient requirement for the degradation of cellulose to methane by a mixed population of anaerobes. J. Gen. Microbiol. 112:365–372
    [Google Scholar]
  9. Leschine S. B., Canale-Parola E. 1983; Mesophilic cellulolytic Clostridia from freshwater environments. Appl. Environ. Microbiol. 46:728–737
    [Google Scholar]
  10. Madden R. H. 1983; Isolation and characterization of Clostridium stercorarium sp. nov., a cellulolytic thermophile. Int. J. Syst. Bacteriol. 33:837–840
    [Google Scholar]
  11. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  12. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation point. J. Mol. Biol. 5:109–118
    [Google Scholar]
  13. Massen R. H., Bryder M. J., Poole N. J. 1982; Isolation and characterization of an anaerobic cellulolytic bacteria, Clostridium papyrosolvens sp. nov. Int. J. Syst. Bacteriol. 32:87–91
    [Google Scholar]
  14. Ng T. K., Weimer P. J., Zeikus J. G. 1977; Cellulolytic and physiological properties of Clostridium thermocellum. Arch. Microbiol. 114:1–7
    [Google Scholar]
  15. Owen R. J., Hill L. R. 1979; The estimation of base composition, base pairing and genome sizes of bacterial DNAs. 277–292 In Skinner F. A., Lovelock D. W. Identification methods for microbiologists, 2nd. Academic Press, Inc. (London), Ltd.; London:
    [Google Scholar]
  16. Patel G. B., Mackenzie C. R. 1982; Metabolism of Acetivibrio cellulolytic us during optimized growth on glucose, cellobiose and cellulose. Eur. J. Appl. Microbiol. Technol. 16:212–218
    [Google Scholar]
  17. Petitdemange E., Caillet F., Giallo J., Gaudin C. 1984; Clostridium cellulolyticum sp. nov., a cellulolytic mesophilic species from decayed grass. Int. J. Syst. Bacteriol. 34:155–159
    [Google Scholar]
  18. Skinner F. A. 1960; The isolation of an anaerobic cellulose-decomposing bacterium from soil. J. Gen. Microbiol. 22:539–554
    [Google Scholar]
  19. Sleat R., Mah R. A., Robinson R. 1984; Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov. Appl. Environ. Microbiol. 48:88–93
    [Google Scholar]
  20. Sleat R., Mah R. A. 1985; Clostridium populeti sp. nov., a cellulolytic species from a woody-biomass digestor. Int. J. Syst. Bacteriol. 35:160–163
    [Google Scholar]
  21. Smith B. J. 1984; SDS Polyacrylamide electrophoresis of proteins. 41–55 In Walker J. M. Methods in molecular biology 1: Proteins. Humana Press; Clifton, N.J.:
    [Google Scholar]
  22. Sneath P. H. A., Mair M. S., Sharpe M. E., Holt J. G. 1986 Bergey’s manual of systematic bacteriology 2, 1st. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  23. Sutter V. L., Citron M. A. C., Edelstein M., Finegold S. 1985 Wadsworth anaerobic bacteriology manual, 4th. Star Publishing Co.; Belmont, Calif:
    [Google Scholar]
  24. Weimer P. J., Zeikus J. G. 1977; Fermentation on cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum. Appl. Environ. Microbiol. 33:289–297
    [Google Scholar]
  25. Wexler H., Mulligan H. E., Finegold S. M. 1984; Polyacrylamide gel electrophoresis patterns produced by Clostridium difficile. Rev. Infect. Dis. 6:Suppl. 15229–5234
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-39-1-68
Loading
/content/journal/ijsem/10.1099/00207713-39-1-68
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error