1887

Abstract

The specificity of monoclonal antibody 2E5 for the alkaline phosphatase of was studied against the alkaline phosphatases of 251 other bacterial strains. The organisms used included members of the six species of the genus (), 41 species representing the family , and, in addition, spp., , and non-01. Three methods were used. An enzyme-linked immunosorbent assay was performed against 2IU of alkaline phosphatase per ml; immunofluorescence against bacterial cells and Western blotting against periplasmic proteins were also used. All of our experiments demonstrated the high specificity of monoclonal antibody 2E5. This antibody recognized only (118 strains tested) and the four species of the genus ; 12 strains tested).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-38-2-201
1988-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/38/2/ijsem-38-2-201.html?itemId=/content/journal/ijsem/10.1099/00207713-38-2-201&mimeType=html&fmt=ahah

References

  1. Bhatti A. R. 1973; Variation of alkaline phosphatase isoenzymes in Escherichia coli and Serratia marcescens. FEBS Lett. 32:81–83
    [Google Scholar]
  2. Brenner D. J., Davis B. R., Steigerwalt A. G., Riddle C. F., McWhorter A. C., Allen S. D., Farmer S. D., Saitoh Y., Fanning G. R. 1982; Atypical biogroups of Escherichia coli found in clinical specimens and description of Escherichia hermannii sp. nov. J. Clin. Microbiol. 15:703–713
    [Google Scholar]
  3. Brenner D. J., Fanning G. R., Miklos G. V., Steigerwalt A. G. 1973; Polynucleotide sequence relatedness among Shigella species. Int. J. Syst. Bacteriol. 23:1–7
    [Google Scholar]
  4. Brenner D. J., McWhorter A. C., Leete-Knudson J. K., Steigerwalt A. G. 1982; Escherichia vulneris: a new species of Enterobacteriaceae associated with human wounds. J. Clin. Microbiol. 15:1133–1140
    [Google Scholar]
  5. Burgess N. R. H., McDermott S. N., Whiting J. 1973; Aerobic bacteria occurring in the hind-gut of the cockroach, Blatta orientalis. J. Hyg. 71:1–7
    [Google Scholar]
  6. Cocks G. T., Wilson A. C. 1969; Immunological detection of single amino acid substitutions in alkaline phosphatase. Science 164:188–189
    [Google Scholar]
  7. Cocks G. T., Wilson A. C. 1972; Enzyme evolution in the Enterobacteriaceae. J. Bacteriol. 110:793–802
    [Google Scholar]
  8. Done J., Slorey C. D., Lake J. P., Pollak J. K. 1965; The cytochemical localization of alkaline phosphatase in Escherichia coli at the electron microscope level. Biochem. J. 96:27c–28c
    [Google Scholar]
  9. Edelstein P. H., Beer K. B., Sturge J. C., Watson A. J., Goldstein L. C. 1985; Clinical utility of a monoclonal direct fluorescent reagent specific for Legionella pneumophila: comparative study with other reagents. J. Clin. Microbiol. 22:419421
    [Google Scholar]
  10. Farmer J. J. III, Fanning G. R., Davis B. R., O’Hara C. M., Riddle C., Hickman-Brenner F. W., Asbury M. A., Lowery V. A., Brenner D. J. 1984; Escherichia fergusonii and Enterobacter taylorae, two new species of Enterobacteriaceae isolated from clinical specimens. J. Clin. Microbiol. 21:77–81
    [Google Scholar]
  11. Garen A., Levinthal C. 1960; Purification and characterization of alkaline phosphatase. Biochim. Biophys. Acta 38:470–483
    [Google Scholar]
  12. Husson M. O., Trinel P. A., Izard D., Mielcarek C., Gavini F., Leclerc H. 1987; Antigenic specificity of Escherichia coli alkaline phosphatase studied with monoclonal antibodies: immunological characterization of E. coli and Shigella strains. Ann. Inst. Pasteur (Paris) 138:39–48
    [Google Scholar]
  13. Izard D., Mergaert J., Gavini F., Beji A., Kersters K., De Ley J., Leclerc H. 1985; Separation of Escherichia adecarboxylata from the “Erwinia herbicola-Enterobacter agglomerans” complex and from the other Enterobacteriaceae by acid nucleic acid and protein electrophoretic techniques. Ann. Inst. Pasteur (Paris) 136B:151–168
    [Google Scholar]
  14. Kohler G., Milstein C. 1975; Continuous culture of fused cells secreting antibody of predefined specificity. Nature (London) 256:495–497
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  16. Levinthal C., Signer E. R., Fetherolf K. 1962; Reactivation and hybridization of reduced alkaline phosphatase. Proc. Natl. Acad. Sci. USA 48:1230–1237
    [Google Scholar]
  17. MacAlister T. J., Irvin R. T., Costerton J. W. 1977; Cell surface localized alkaline phosphatase of Escherichia coli as visualized by reaction product deposition and ferritin-labeled antibodies. J. Bacteriol. 130:318–328
    [Google Scholar]
  18. Nesmeyanova M. A., Motlokh O. B., Kolot M. N., Kulaev I. S. 1981; Multiple forms of alkaline phosphatase from Escherichia coli cells with repressed and derepressed biosynthesis of the enzyme. J. Bacteriol. 146:453–459
    [Google Scholar]
  19. Rench M. A., Metzger T. G., Baker C. J. 1984; Detection of group B streptococcal antigen in body fluids by a latexcoupled monoclonal antibody assay. J. Clin. Microbiol. 20:852854
    [Google Scholar]
  20. Schlesinger M. J., Andersen L. 1968; Multiple molecular forms of the alkaline phosphatase of Escherichia coli. Ann. N.Y. Acad. Sci. 151:159–170
    [Google Scholar]
  21. Schlesinger M. J., Bloch W., Kelley P. M. 1975 Differences in the structure, function, and formation of two isozymes of Escherichia coli alkaline phosphatase. 333–342 Markert C. L.ed Isozymes 1 Molecular structure Academic Press, Inc.; New York:
    [Google Scholar]
  22. Schlesinger M. J., Olsen R. 1968; Expression and localization of Escherichia coli alkaline phosphatase synthesized in Salmonella typhimurium. J. Bacteriol. 96:1601–1605
    [Google Scholar]
  23. Tamura K., Sakazaki R., Kosako Y., Yoshizaki E. 1986; Leclercia adecarboxylata gen. nov., comb, nov., formerly known as Escherichia adecarboxylata. Curr. Microbiol. 13:179184
    [Google Scholar]
  24. Tommassen J., Lugtenberg B. 1982; Pho-regulon of Escherichia coli K 12: a minireview. Ann. Inst. Pasteur (Paris) 133:243–249
    [Google Scholar]
  25. Towbin H., Staehlin T., Gordon I. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4353
    [Google Scholar]
  26. Tsuchido T., Katsvi N., Takeuchi A., Takano M., Shibasaki I. 1985; Destruction of the outer membrane permeability barrier of Escherichia coli by heat treatment. Appl. Environ. Microbiol. 50:298–303
    [Google Scholar]
  27. Wanner B. L., Latterell P. 1980; Mutants affected in alkaline phosphatase expression: evidence for multiple regulators of the phosphate regulor in Escherichia coli. Genetics 96:353–366
    [Google Scholar]
  28. Weber K., Osborn M. 1969; The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chern. 244:4406–4412
    [Google Scholar]
  29. Williams T., Maniar A. C., Brunham R. C., Hammond G. W. 1985; Identification of Chlamydia trachomatis by direct immunofluorescence applied in specimen originating in remote area. J. Clin. Microbiol. 22:1053–1054
    [Google Scholar]
  30. Willsky G. R., Malamy M. H. 1976; Control of the synthesis of alkaline phosphatase and the phosphate-binding protein in Escherichia coli. J. Bacteriol. 127:595–609
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-38-2-201
Loading
/content/journal/ijsem/10.1099/00207713-38-2-201
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error