1887

Abstract

A new strictly anaerobic, moderate thermophilic (optimum temperature, 45°C), cellulolytic, sporeforming bacterium was isolated from Thai compost. The cells of this organism stained gram positive but became gram negative as cultures reached stationary phase. They were nonmotile rods and formed terminal oval spores which swelled the cells. The deep colonies of this organism were spindle shaped and yellowish white. A variety of carbohydrates, such as cellobiose, esculin, and xylose, served as substrates for growth. Ethanol, acetate, butyrate, hydrogen, and carbon dioxide were produced during growth on cellulose or cellobiose. This organism hydrolyzed crystalline cellulose, rice straw, and other cellulosic materials without any chemical pretreatment. Optimal growth occurred at 45°C and pH 7.0. The deoxyribonucleic acid base composition was 40 mol% guanine plus cytosine. The name sp. nov. is proposed for this new isolate, and the type strain has been deposited in the Fermentation Research Institute, Tsukuba, Japan, as strain FERM P-9684.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-38-2-179
1988-04-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/38/2/ijsem-38-2-179.html?itemId=/content/journal/ijsem/10.1099/00207713-38-2-179&mimeType=html&fmt=ahah

References

  1. Cato E. P., George W. L., Finegold S. M. 1986 Genus Clostridium prazmowski 1880, 23 AL. 1141–1200 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 The Williams & Wilkins Co.; Baltimore.:
    [Google Scholar]
  2. Forn O., Petitdemange E., Petitdemange H., Engasser J. M. 1983; Cellulose fermentation by a coculture of a mesophilic cellulolytic Clostridium and Clostridium acetobutyricum. Biotechnol. Bioeng. Symp. 13:217–224
    [Google Scholar]
  3. Ghosh P., Pamment N. B., Martin W. R. B. 1982; Simultaneous saccharification and fermentation of cellulose: effect of (β-d-glucosidase activity and ethanol inhibition of cellulases. Enzyme Microb. Technol. 4:425–430
    [Google Scholar]
  4. Hagerdal B., Ferchak J. D., Pye E. K. 1978; Cellulolytic enzyme system of Thermoactinospora sp. grown on microcrystalline cellulose. Appl. Environ. Microbiol. 36:606–612
    [Google Scholar]
  5. Hagerdal B., Ferchak J. D., Pye E. K. 1980; Saccharification of cellulose by the enzyme system of Thermonospora sp. I. Stability of cellulolytic activity with respect to time, temperature and pH. Biotechnol. Bioeng. 22:1515–1526
    [Google Scholar]
  6. Herr D., Luck G., Dessweg H. 1978; Formation of cellulases and degradation of cellulose by several fungi. J. Ferment. Technol. 56:273–278
    [Google Scholar]
  7. Holdeman L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe laboratory manual,, 4th. Anaerobe Laboratory, Virginia Polytechnic Institute and State University; Blacksburg:
    [Google Scholar]
  8. Holdeman L. V., Moore W. E. C. 1974; New genus, Coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces. Int. J. Syst. Bacteriol. 24:260–277
    [Google Scholar]
  9. Hungate R. E. 1966 The rumen and its microbes. Academic Press, Inc.; New York:
    [Google Scholar]
  10. Katoh K., Suzuki-Onozaki A., Ohta T., Ebine H., Kumagai M., Fujimoto M., Kuninaka A. 1983; Microbial identification of single cell proteins based on DNA-GC contents. II. Chemical determination of DNA-GC contents. Rep. Natl. Food Res. Inst. 43:79–89
    [Google Scholar]
  11. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A.ed 1975 International code of nomenclature of bacteria. 1975. Revision American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  12. Madden R. H. 1983; Isolation and characterization of Clostridium stercorarium sp. nov., cellulolytic thermophile. Int. J. Syst. Bacteriol. 33:837–840
    [Google Scholar]
  13. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  14. Peptitdemange E., Caillet F., Giallo J., Gaudin C. 1984; Clostridium cellulolyticum sp. nov., a cellulolytic, mesophilic species from decayed grass. Int. J. Syst. Bacteriol. 34:155–159
    [Google Scholar]
  15. Sleat R., Mah R. A. 1985; Clostridium populeti sp. nov., a cellulolytic species from a woody-biomass digestor. Int. J. Syst. Bacteriol. 35:160–163
    [Google Scholar]
  16. Sleat R., Mah R. A., Robinson R. 1984; Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov. Int. J. Syst. Bacteriol. 48:88–93
    [Google Scholar]
  17. Sukhumavasi J., Ohmiya K., Suwana-Adth M., Shimizu S. 1984; Conversion of tough cellulose to useful compounds by an anaerobic isolate from compost. J. Ferment. Technol. 62:545–550
    [Google Scholar]
  18. Taya M., Ito Y., Ohmiya K., Kobayashi T., Shimizu S. 1978; Cellulose digestion with anaerobic microorganisms. J. Agric. Chern. Soc. Jpn. 52:567–574
    [Google Scholar]
  19. Taya M., Ito Y., Ohmiya K., Kobayashi T., Shimizu S. 1979; Anaerobic digestion of cellulose and utilization of digest product in a consecutive cultivation system. J. Ferment. Technol. 57:178–185
    [Google Scholar]
  20. Taya M., Kobayashi T., Shimizu S. 1980; Synthetic medium for a cellulolytic anaerobe, Ruminococcus albus. Agric. Biol. Chern. 44:2225–2227
    [Google Scholar]
  21. Zeikus J. G. 1980; Thermophilic bacterial ecology, physiology and technology. Enzyme Microb. Technol. 1:243–252
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-38-2-179
Loading
/content/journal/ijsem/10.1099/00207713-38-2-179
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error